Inhaltsverzeichnis
Ursprung von GIL
GIL-Einschränkungen
Alternativen zu GIL
Fine-grained GIL
Verwenden Sie
Heim Backend-Entwicklung Python-Tutorial Die Entwicklung der GIL: Die sich verändernde Landschaft des gleichzeitigen Python

Die Entwicklung der GIL: Die sich verändernde Landschaft des gleichzeitigen Python

Mar 02, 2024 pm 04:10 PM
python 多线程 gil 并发 Mehrfachverarbeitung

GIL 的演变:并发 Python 的不断变化格局

Der globale Interpreter

lock (GIL) in Python ist seit seiner Einführung ein heiß diskutiertes Thema. Obwohl die GIL sicherstellt, dass der Python-Interpreter jeweils nur einen Thread ausführt und so die Speichersicherheit aufrechterhält, schränkt sie auch die Möglichkeit der Parallelität ein. In diesem Artikel wird die Entwicklung von GIL von seinem ursprünglichen Design bis zu seinem aktuellen Status und zukünftigen Richtungen untersucht.

Ursprung von GIL

GIL wurde ursprünglich in Python 1.5 eingeführt, um zu verhindern, dass mehrere Threads dasselbe Objekt gleichzeitig ändern, was zu Datenbeschädigungen führt. Damals wurde Python hauptsächlich auf Single-Core-Computern verwendet und die GIL war kein wesentlicher limitierender Faktor.

GIL-Einschränkungen

Mit der Popularität von Multicore-Computern sind die Grenzen von GIL deutlich geworden. Da die GIL jeweils nur die Ausführung eines Threads zulässt, kann gleichzeitiger Code nur auf einem einzelnen Kern ausgeführt werden. Dies kann zu Leistungsproblemen bei Anwendungen führen, die viel Parallelität erfordern.

Alternativen zu GIL

Um die Einschränkungen der GIL zu überwinden, wurden eine Reihe von Alternativen entwickelt:

  • Mehrere Prozesse: Erstellen Sie mehrere Python-Prozesse, jeder mit seiner eigenen GIL. Dies ermöglicht echte Parallelität, ist jedoch aufgrund des Kommunikationsaufwands zwischen Prozessen möglicherweise weniger effizient.
  • Bibliotheken von Drittanbietern: wie , die concurrent.futuresmultiprocessingTools für die parallele und gleichzeitige Ausführung von Aufgaben bereitstellen. Diese Bibliotheken verwenden einen Prozesspool oder „Thread-Pool“ zur Verwaltung der GIL, sodass Code auf mehreren Kernen ausgeführt werden kann. Coroutine (Coroutine):
  • Coroutine ist ein leichter Parallelitätsmechanismus, der es ermöglicht, mehrere Aufgaben innerhalb eines Threads anzuhalten und fortzusetzen. Coroutinen erfordern keine GIL, basieren jedoch auf manueller Planung und Kontextwechsel.
  • GIL-Verbesserungen in Python 3.8
In Python 3.8 wurden wesentliche Verbesserungen an der GIL eingeführt, um die Parallelitätsleistung zu verbessern. Zu diesen Verbesserungen gehören:

Ereignisbasierte GIL-Freigabe:
    Die GIL kann jetzt während Ereignisschleifenereignissen wie E/A-Vorgängen freigegeben werden. Dadurch können andere Threads ausgeführt werden, während die Ereignisschleife E/A-Vorgänge verarbeitet.
  • Adaptive GIL-Latenz:
  • Die GIL-Latenz passt sich an, je nachdem, wie stark Ihre Anwendung Multithreading verwendet. Wenn weniger Threads verwendet werden, ist die GIL-Latenz länger, was mehr Parallelität ermöglicht.
  • GIL-Verbesserungen in Python 3.10
Python 3.10 führt weitere Verbesserungen an der GIL mit dem Namen

Fine-grained GIL

ein. Eine feinkörnige GIL schränkt den Umfang der GIL auf kleinere Codeblöcke ein und ermöglicht so eine feinere Parallelitätskontrolle. Dies ist besonders vorteilhaft für Anwendungen, die bei häufigen atomaren Vorgängen Parallelität erfordern.

Zukunftsausblick

Die Zukunft von GIL bleibt ungewiss. Obwohl das Python-Entwicklungsteam bestrebt ist, die GIL kontinuierlich zu verbessern, ist es möglich, dass sie in einer zukünftigen Version vollständig entfernt wird. Alternativen wie Multiprocessing und Coroutinen entwickeln sich immer weiter und ersetzen möglicherweise die GIL als bevorzugten Mechanismus für Parallelität in Python.

Demo-Code

Verwenden Sie

für die Parallelverarbeitung:

import concurrent.futures

def task(n):
return n * n

with concurrent.futures.ProcessPoolExecutor() as executor:
results = executor.map(task, range(10))
Nach dem Login kopieren
concurrent.futuresVerwenden Sie async</p>io<p> für Coroutine: async<strong class="keylink">io</strong>
import asyncio

async def task(n):
return n * n

async def main():
tasks = [task(n) for n in range(10)]
results = await asyncio.gather(*tasks)

asyncio.run(main())
Nach dem Login kopieren

Zusammenfassung

Die Entwicklung von GIL in der Python-Parallelität ist ein komplexes und herausforderndes Problem. Da Python zunehmend Wert auf Multi-Core-Verarbeitung und Hochleistungsrechnen legt, wird die Zukunft der GIL weiterhin genau beobachtet. Entwickler müssen die Vorteile und Einschränkungen der GIL abwägen und den geeigneten Parallelitätsmechanismus für ihre spezielle Anwendung auswählen. Durch das Verständnis der Entwicklung der GIL können Entwickler fundierte Entscheidungen treffen und effiziente und skalierbare gleichzeitige Python-Anwendungen erstellen.

Das obige ist der detaillierte Inhalt vonDie Entwicklung der GIL: Die sich verändernde Landschaft des gleichzeitigen Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wählen Sie zwischen PHP und Python: Ein Leitfaden Wählen Sie zwischen PHP und Python: Ein Leitfaden Apr 18, 2025 am 12:24 AM

PHP eignet sich für Webentwicklung und schnelles Prototyping, und Python eignet sich für Datenwissenschaft und maschinelles Lernen. 1.PHP wird für die dynamische Webentwicklung verwendet, mit einfacher Syntax und für schnelle Entwicklung geeignet. 2. Python hat eine kurze Syntax, ist für mehrere Felder geeignet und ein starkes Bibliotheksökosystem.

PHP und Python: Verschiedene Paradigmen erklärt PHP und Python: Verschiedene Paradigmen erklärt Apr 18, 2025 am 12:26 AM

PHP ist hauptsächlich prozedurale Programmierung, unterstützt aber auch die objektorientierte Programmierung (OOP). Python unterstützt eine Vielzahl von Paradigmen, einschließlich OOP, funktionaler und prozeduraler Programmierung. PHP ist für die Webentwicklung geeignet, und Python eignet sich für eine Vielzahl von Anwendungen wie Datenanalyse und maschinelles Lernen.

Kann Visual Studio -Code in Python verwendet werden Kann Visual Studio -Code in Python verwendet werden Apr 15, 2025 pm 08:18 PM

VS -Code kann zum Schreiben von Python verwendet werden und bietet viele Funktionen, die es zu einem idealen Werkzeug für die Entwicklung von Python -Anwendungen machen. Sie ermöglichen es Benutzern: Installation von Python -Erweiterungen, um Funktionen wie Code -Abschluss, Syntax -Hervorhebung und Debugging zu erhalten. Verwenden Sie den Debugger, um Code Schritt für Schritt zu verfolgen, Fehler zu finden und zu beheben. Integrieren Sie Git für die Versionskontrolle. Verwenden Sie Tools für die Codeformatierung, um die Codekonsistenz aufrechtzuerhalten. Verwenden Sie das Lining -Tool, um potenzielle Probleme im Voraus zu erkennen.

Kann gegen Code in Windows 8 ausgeführt werden Kann gegen Code in Windows 8 ausgeführt werden Apr 15, 2025 pm 07:24 PM

VS -Code kann unter Windows 8 ausgeführt werden, aber die Erfahrung ist möglicherweise nicht großartig. Stellen Sie zunächst sicher, dass das System auf den neuesten Patch aktualisiert wurde, und laden Sie dann das VS -Code -Installationspaket herunter, das der Systemarchitektur entspricht und sie wie aufgefordert installiert. Beachten Sie nach der Installation, dass einige Erweiterungen möglicherweise mit Windows 8 nicht kompatibel sind und nach alternativen Erweiterungen suchen oder neuere Windows -Systeme in einer virtuellen Maschine verwenden müssen. Installieren Sie die erforderlichen Erweiterungen, um zu überprüfen, ob sie ordnungsgemäß funktionieren. Obwohl VS -Code unter Windows 8 möglich ist, wird empfohlen, auf ein neueres Windows -System zu upgraden, um eine bessere Entwicklungserfahrung und Sicherheit zu erzielen.

Ist die VSCODE -Erweiterung bösartig? Ist die VSCODE -Erweiterung bösartig? Apr 15, 2025 pm 07:57 PM

VS -Code -Erweiterungen stellen böswillige Risiken dar, wie das Verstecken von böswilligem Code, das Ausbeutetieren von Schwachstellen und das Masturbieren als legitime Erweiterungen. Zu den Methoden zur Identifizierung böswilliger Erweiterungen gehören: Überprüfung von Verlegern, Lesen von Kommentaren, Überprüfung von Code und Installation mit Vorsicht. Zu den Sicherheitsmaßnahmen gehören auch: Sicherheitsbewusstsein, gute Gewohnheiten, regelmäßige Updates und Antivirensoftware.

So führen Sie Programme in der terminalen VSCODE aus So führen Sie Programme in der terminalen VSCODE aus Apr 15, 2025 pm 06:42 PM

Im VS -Code können Sie das Programm im Terminal in den folgenden Schritten ausführen: Erstellen Sie den Code und öffnen Sie das integrierte Terminal, um sicherzustellen, dass das Codeverzeichnis mit dem Terminal Working -Verzeichnis übereinstimmt. Wählen Sie den Befehl aus, den Befehl ausführen, gemäß der Programmiersprache (z. B. Pythons Python your_file_name.py), um zu überprüfen, ob er erfolgreich ausgeführt wird, und Fehler auflösen. Verwenden Sie den Debugger, um die Debugging -Effizienz zu verbessern.

Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Python vs. JavaScript: Die Lernkurve und Benutzerfreundlichkeit Apr 16, 2025 am 12:12 AM

Python eignet sich besser für Anfänger mit einer reibungslosen Lernkurve und einer kurzen Syntax. JavaScript ist für die Front-End-Entwicklung mit einer steilen Lernkurve und einer flexiblen Syntax geeignet. 1. Python-Syntax ist intuitiv und für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet. 2. JavaScript ist flexibel und in Front-End- und serverseitiger Programmierung weit verbreitet.

PHP und Python: Ein tiefes Eintauchen in ihre Geschichte PHP und Python: Ein tiefes Eintauchen in ihre Geschichte Apr 18, 2025 am 12:25 AM

PHP entstand 1994 und wurde von Rasmuslerdorf entwickelt. Es wurde ursprünglich verwendet, um Website-Besucher zu verfolgen und sich nach und nach zu einer serverseitigen Skriptsprache entwickelt und in der Webentwicklung häufig verwendet. Python wurde Ende der 1980er Jahre von Guidovan Rossum entwickelt und erstmals 1991 veröffentlicht. Es betont die Lesbarkeit und Einfachheit der Code und ist für wissenschaftliche Computer, Datenanalysen und andere Bereiche geeignet.

See all articles