Inhaltsverzeichnis
Die erste Form besteht aus strukturierten Daten, die regelmäßig, geordnet und konsistent organisiert sind und Elemente wie Produktinformationen, Kundendemografien oder Lagerbestände umfassen. Diese Art von Daten bietet eine organisierte Faktenbasis, die zu generativen KI-Projekten hinzugefügt werden kann, um die Qualität der Antworten zu verbessern.
Darüber hinaus müssen diese Daten auch vorverarbeitet werden, damit das generative KI-System sie effektiv nutzen kann. Dabei handelt es sich um die Erstellung von Einbettungen, also mathematischen Werten oder Vektoren, die eine semantische Bedeutung darstellen. Durch die Einbettung können generative KI-Systeme über den spezifischen Textabgleich hinausgehen und stattdessen die in den Daten eingebettete Bedeutung und den Kontext berücksichtigen. Unabhängig von der ursprünglichen Datenform bedeutet die Erstellung von Einbettungen, dass die Daten von generativen KI-Systemen verstanden und verwendet werden können, während ihre Bedeutung und ihr Kontext erhalten bleiben.
4. Bereitstellung eines kontinuierlich flexiblen Finanzierungsmodells
Heim Technologie-Peripheriegeräte KI Wie man generative KI verwaltet

Wie man generative KI verwaltet

Mar 11, 2024 pm 12:04 PM
ai 数据 生成式 敏感数据

Wie man generative KI verwaltet

Autor: Dom Couldwell: Zusammenstellung: Noah: Produziert | global Wirtschaft jedes Jahr Billionen bis 4,4 Billionen US-Dollar an wirtschaftlichen Vorteilen. Diese Prognose basiert auf 63 neuen Anwendungsszenarien, die Kunden in mehreren Märkten Verbesserungen, Effizienzsteigerungen und neue Produkte bringen sollen. Dies ist zweifellos eine große Chance für Entwickler und IT-Führungskräfte.

Der Kern der generativen KI liegt in Daten. Daten verleihen der generativen KI nicht nur die Fähigkeit, die Welt um sie herum zu verstehen und zu analysieren, sondern fördern auch ihr transformatives Potenzial. Um im Bereich der generativen KI erfolgreich zu sein, müssen Unternehmen Daten effektiv verwalten und aufbereiten.

Um groß angelegte KI-Dienste erfolgreich aufzubauen und zu betreiben und generative KI-Projekte zu unterstützen, müssen Sie sicherstellen, dass Sie Ihre Hausaufgaben bei der Datenaufbereitung machen und eine intelligente und nachhaltige Finanzierungsstrategie verfolgen. Ein langsames Tempo und ein nachlassender Unterstützungsansatz werden nicht zu einem Vorteil in der künstlichen Intelligenz führen. Daher ist es neben der Ausweitung des Umfangs der KI-Dienste auch notwendig, stabile Finanzierungsquellen für Projekte sicherzustellen, um eine langfristige Entwicklung und kontinuierliche Innovation zu fördern.

Wenn wir die Art und Weise, wie wir Daten verwalten, nicht verbessern oder nicht den richtigen Ansatz zur Bewältigung von Skalierungs- und Kostenkontrollproblemen wählen, wird das enorme Potenzial generativer KI verschwendet. Hier einige Gedanken, wie wir unseren Ansatz im Datenmanagement verbessern und generative KI-Projekte langfristig unterstützen können.

1. Woher kommen die Daten?

Daten gibt es in verschiedenen Formen. Bei richtiger Verwendung kann jede Datenform den Reichtum und die Qualität generativer KI-Erkenntnisse verbessern.

Die erste Form besteht aus strukturierten Daten, die regelmäßig, geordnet und konsistent organisiert sind und Elemente wie Produktinformationen, Kundendemografien oder Lagerbestände umfassen. Diese Art von Daten bietet eine organisierte Faktenbasis, die zu generativen KI-Projekten hinzugefügt werden kann, um die Qualität der Antworten zu verbessern.

Darüber hinaus verfügen Sie möglicherweise über externe Datenquellen, die Ihre internen strukturierten Datenquellen ergänzen, wie z. B. Wetterberichte, Aktienkurse oder Verkehrsströme usw. Diese Daten können Echtzeit-Kontexte aus der realen Welt in den Entscheidungsprozess einbringen, und ihre Integration in ein Projekt kann zusätzliche qualitativ hochwertige Daten liefern, aber es ist möglicherweise nicht notwendig, diese Daten selbst zu generieren.

Ein weiterer häufiger Datensatz sind abgeleitete Daten, die Daten umfassen, die durch Analyse- und Modellierungsszenarien erstellt wurden. Zu diesen Erkenntnissen können Kundenabsichtsberichte, saisonale Verkaufsprognosen oder Segmentanalysen gehören.

Die letzte gängige Datenform sind unstrukturierte Daten, die sich von den regulären Berichts- oder Datenformaten unterscheiden, die Analysten gewohnt sind. Zu dieser Art von Daten gehören Formate wie Bilder, Dokumente und Audiodateien. Diese Daten erfassen die Nuancen der menschlichen Kommunikation und des menschlichen Ausdrucks. Generative KI-Programme arbeiten oft mit Bildern oder Audio, die übliche Ein- und Ausgaben für generative KI-Modelle sind.

2. Um eine groß angelegte Anwendung generativer KI zu erreichen

Alle diese unterschiedlichen Datensätze existieren jeweils in ihrer eigenen Umgebung. Um sie für generative KI-Projekte nutzbar zu machen, liegt der Schlüssel darin, diese vielfältige Datenlandschaft in Echtzeitsituationen zugänglich zu machen. Bei einer derart großen Menge an potenziellen Daten muss jeder Ansatz in der Lage sein, sich bei steigender Nachfrage dynamisch zu skalieren und Daten global zu replizieren, um sicherzustellen, dass die Ressourcen bei Bedarf in der Nähe der Benutzer sind, um Ausfallzeiten zu vermeiden und die Latenz bei Transaktionsanfragen zu reduzieren.

Darüber hinaus müssen diese Daten auch vorverarbeitet werden, damit das generative KI-System sie effektiv nutzen kann. Dabei handelt es sich um die Erstellung von Einbettungen, also mathematischen Werten oder Vektoren, die eine semantische Bedeutung darstellen. Durch die Einbettung können generative KI-Systeme über den spezifischen Textabgleich hinausgehen und stattdessen die in den Daten eingebettete Bedeutung und den Kontext berücksichtigen. Unabhängig von der ursprünglichen Datenform bedeutet die Erstellung von Einbettungen, dass die Daten von generativen KI-Systemen verstanden und verwendet werden können, während ihre Bedeutung und ihr Kontext erhalten bleiben.

Mit diesen Einbettungen können Unternehmen Vektor- oder Hybridsuchen in allen ihren Daten unterstützen und gleichzeitig Wert und Bedeutung kombinieren. Diese Ergebnisse werden dann gesammelt und an ein groß angelegtes Sprachmodell (LLM) zurückgegeben, das zur Integration der Ergebnisse verwendet wird. Indem Sie mehr Daten aus mehreren Quellen bereitstellen, anstatt sich ausschließlich auf LLM selbst zu verlassen, können Ihre generativen KI-Projekte den Benutzern genauere Ergebnisse liefern und das Risiko fiktionaler Inhalte verringern.

Um dies in der Praxis zu erreichen, muss die richtige zugrundeliegende Datenarchitektur gewählt werden. Während dieses Prozesses sollten Daten so weit wie möglich vermieden werden, indem sie in verschiedenen Lösungen zu einem fragmentierten Flickenteppich verteilt werden, da jede dieser Lösungen eine Dateninsel darstellt, die eine langfristige Unterstützung, Abfrage und Verwaltung erfordert. Benutzer sollten in der Lage sein, schnell LLM-Fragen zu stellen und schnell Antworten zu erhalten, anstatt darauf zu warten, dass mehrere Komponenten antworten und ihre Ergebnisse vom Modell gewichtet werden. Eine einheitliche Datenarchitektur sollte eine nahtlose Datenintegration ermöglichen und es der generativen KI ermöglichen, das gesamte verfügbare Datenspektrum vollständig zu nutzen.

3. Vorteile des modularen Ansatzes

Um generative KI-Implementierungen zu skalieren, muss ein Gleichgewicht zwischen der Beschleunigung der Einführung und der Aufrechterhaltung der Kontrolle über kritische Assets bestehen. Ein modularer Ansatz zum Aufbau generativer KI-Agenten kann diesen Prozess vereinfachen, da er den Implementierungsprozess aufschlüsselt und potenzielle Engpässe vermeidet.

Ähnlich wie bei der Anwendung des Microservices-Designs in Anwendungen fördert ein modularer Ansatz für KI-Dienste auch Best Practices rund um das Anwendungs- und Softwaredesign, wodurch Fehlerquellen beseitigt und die Technologie mehr potenziellen Benutzern zugänglich gemacht wird. Dieser Ansatz erleichtert auch die Überwachung der Leistung von KI-Agenten im gesamten Unternehmen und ermöglicht eine genauere Lokalisierung von Problemen.

Der erste Vorteil der Modularität ist die Interpretierbarkeit, da die an einem generativen KI-System beteiligten Komponenten voneinander getrennt sind, was es einfacher macht, zu analysieren, wie der Agent arbeitet und Entscheidungen trifft. KI wird oft als „Black Box“ betrachtet und die Modularität erleichtert die Verfolgung und Interpretation von Ergebnissen.

Der zweite Vorteil ist die Sicherheit, da einzelne Komponenten durch optimale Authentifizierungs- und Autorisierungsmechanismen geschützt werden können und so sichergestellt wird, dass nur autorisierte Benutzer auf sensible Daten und Funktionen zugreifen können. Modularität erleichtert auch Compliance und Governance, da personenbezogene Daten (PII) oder geistiges Eigentum (IP) geschützt und vom zugrunde liegenden LLM getrennt aufbewahrt werden können.

4. Bereitstellung eines kontinuierlich flexiblen Finanzierungsmodells

Zusätzlich zur Einführung eines Microservices-Ansatzes sollte in allgemeinen generativen KI-Projekten eine Plattform-Denkweise übernommen werden. Dies bedeutet, dass das traditionelle projektbasierte Finanzierungsmodell für Softwareprojekte durch ein Modell ersetzt wird, das ein fortlaufendes und flexibles Finanzierungsmodell bietet. Dieser Ansatz ermöglicht es den Teilnehmern, wertebasierte Entscheidungen zu treffen, auf sich bietende Chancen zu reagieren und Best Practices zu entwickeln, ohne durch starre Finanzierungszyklen oder Geschäftsfälle eingeschränkt zu werden.

Eine solche Budgetverwaltung ermutigt Entwickler und Geschäftsteams auch dazu, generative KI als Teil der bereits vorhandenen Infrastruktur des Unternehmens zu betrachten, was es einfacher macht, die Höhen und Tiefen der Planungsarbeitslasten zu glätten und auf „Exzellenz“ zu reagieren „Center“-Ansatz verfolgen und langfristig Konsistenz wahren.

Ein ähnlicher Ansatz besteht darin, generative KI als ein vom Unternehmen selbst betriebenes Produkt und nicht als reine Software zu betrachten. KI-Agenten sollten als Produkte verwaltet werden, da dies den von ihnen geschaffenen Wert besser widerspiegelt und Supportressourcen für Integrationen, Tools und Tipps leichter verfügbar macht. Die Vereinfachung dieses Modells trägt dazu bei, das Verständnis für generative KI im gesamten Unternehmen zu verbreiten, fördert die Einführung bewährter Verfahren und schafft eine Kultur des gemeinsamen Fachwissens und der Zusammenarbeit bei der generativen KI-Entwicklung.

Generative KI hat ein enormes Potenzial und Unternehmen sind bestrebt, neue Tools, Agenten und Hinweise in ihre Abläufe zu implementieren. Um diese potenziellen Projekte in die Produktion zu bringen, sind jedoch ein effektives Datenmanagement, eine Grundlage für die Skalierung des Systems und ein geeignetes Budgetmodell zur Unterstützung des Teams erforderlich. Wenn Sie Ihre Prozesse richtig gestalten und Prioritäten setzen, können Sie und Ihr Team das transformative Potenzial dieser Technologie ausschöpfen.

Referenzadresse: https://www.infoworld.com/article/3713461/how-to-manage-generative-ai.html

Das obige ist der detaillierte Inhalt vonWie man generative KI verwaltet. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Welche Methode wird verwendet, um Strings in Objekte in Vue.js umzuwandeln? Apr 07, 2025 pm 09:39 PM

Bei der Konvertierung von Zeichenfolgen in Objekte in Vue.js wird JSON.Parse () für Standard -JSON -Zeichenfolgen bevorzugt. Bei nicht standardmäßigen JSON-Zeichenfolgen kann die Zeichenfolge durch Verwendung regelmäßiger Ausdrücke verarbeitet und Methoden gemäß dem Format oder dekodierten URL-kodiert reduziert werden. Wählen Sie die entsprechende Methode gemäß dem String -Format aus und achten Sie auf Sicherheits- und Codierungsprobleme, um Fehler zu vermeiden.

VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? VUE.JS Wie kann man ein Array von String -Typ in ein Array von Objekten umwandeln? Apr 07, 2025 pm 09:36 PM

Zusammenfassung: Es gibt die folgenden Methoden zum Umwandeln von VUE.JS -String -Arrays in Objektarrays: Grundlegende Methode: Verwenden Sie die Kartenfunktion, um regelmäßige formatierte Daten zu entsprechen. Erweitertes Gameplay: Die Verwendung regulärer Ausdrücke kann komplexe Formate ausführen, müssen jedoch sorgfältig geschrieben und berücksichtigt werden. Leistungsoptimierung: In Betracht ziehen die große Datenmenge, asynchrone Operationen oder effiziente Datenverarbeitungsbibliotheken können verwendet werden. Best Practice: Clear Code -Stil, verwenden Sie sinnvolle variable Namen und Kommentare, um den Code präzise zu halten.

Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Laravels Geospatial: Optimierung interaktiver Karten und großen Datenmengen Apr 08, 2025 pm 12:24 PM

Verarbeiten Sie 7 Millionen Aufzeichnungen effizient und erstellen Sie interaktive Karten mit Geospatial -Technologie. In diesem Artikel wird untersucht, wie über 7 Millionen Datensätze mithilfe von Laravel und MySQL effizient verarbeitet und in interaktive Kartenvisualisierungen umgewandelt werden können. Erstes Herausforderungsprojektanforderungen: Mit 7 Millionen Datensätzen in der MySQL -Datenbank wertvolle Erkenntnisse extrahieren. Viele Menschen erwägen zunächst Programmiersprachen, aber ignorieren die Datenbank selbst: Kann sie den Anforderungen erfüllen? Ist Datenmigration oder strukturelle Anpassung erforderlich? Kann MySQL einer so großen Datenbelastung standhalten? Voranalyse: Schlüsselfilter und Eigenschaften müssen identifiziert werden. Nach der Analyse wurde festgestellt, dass nur wenige Attribute mit der Lösung zusammenhängen. Wir haben die Machbarkeit des Filters überprüft und einige Einschränkungen festgelegt, um die Suche zu optimieren. Kartensuche basierend auf der Stadt

Remote Senior Backend Engineers (Plattformen) benötigen Kreise Remote Senior Backend Engineers (Plattformen) benötigen Kreise Apr 08, 2025 pm 12:27 PM

Remote Senior Backend Engineer Job Vacant Company: Circle Standort: Remote-Büro-Jobtyp: Vollzeitgehalt: 130.000 bis 140.000 US-Dollar Stellenbeschreibung Nehmen Sie an der Forschung und Entwicklung von Mobilfunkanwendungen und öffentlichen API-bezogenen Funktionen, die den gesamten Lebenszyklus der Softwareentwicklung abdecken. Die Hauptaufgaben erledigen die Entwicklungsarbeit unabhängig von RubyonRails und arbeiten mit dem Front-End-Team von React/Redux/Relay zusammen. Erstellen Sie die Kernfunktionalität und -verbesserungen für Webanwendungen und arbeiten Sie eng mit Designer und Führung während des gesamten funktionalen Designprozesses zusammen. Fördern Sie positive Entwicklungsprozesse und priorisieren Sie die Iterationsgeschwindigkeit. Erfordert mehr als 6 Jahre komplexes Backend für Webanwendungen

So stellen Sie die Zeitüberschreitung von Vue Axios fest So stellen Sie die Zeitüberschreitung von Vue Axios fest Apr 07, 2025 pm 10:03 PM

Um die Zeitüberschreitung für Vue Axios festzulegen, können wir eine Axios -Instanz erstellen und die Zeitleitungsoption angeben: in globalen Einstellungen: vue.Prototyp. $ Axios = axios.create ({Timeout: 5000}); In einer einzigen Anfrage: this. $ axios.get ('/api/user', {timeout: 10000}).

So verwenden Sie MySQL nach der Installation So verwenden Sie MySQL nach der Installation Apr 08, 2025 am 11:48 AM

Der Artikel führt den Betrieb der MySQL -Datenbank vor. Zunächst müssen Sie einen MySQL -Client wie MySQLworkBench oder Befehlszeilen -Client installieren. 1. Verwenden Sie den Befehl mySQL-uroot-P, um eine Verbindung zum Server herzustellen und sich mit dem Stammkonto-Passwort anzumelden. 2. Verwenden Sie die Erstellung von Createdatabase, um eine Datenbank zu erstellen, und verwenden Sie eine Datenbank aus. 3.. Verwenden Sie CreateTable, um eine Tabelle zu erstellen, Felder und Datentypen zu definieren. 4. Verwenden Sie InsertInto, um Daten einzulegen, Daten abzufragen, Daten nach Aktualisierung zu aktualisieren und Daten nach Löschen zu löschen. Nur indem Sie diese Schritte beherrschen, lernen, mit gemeinsamen Problemen umzugehen und die Datenbankleistung zu optimieren, können Sie MySQL effizient verwenden.

Wie man MySQL löst, kann nicht gestartet werden Wie man MySQL löst, kann nicht gestartet werden Apr 08, 2025 pm 02:21 PM

Es gibt viele Gründe, warum MySQL Startup fehlschlägt und durch Überprüfung des Fehlerprotokolls diagnostiziert werden kann. Zu den allgemeinen Ursachen gehören Portkonflikte (prüfen Portbelegung und Änderung der Konfiguration), Berechtigungsprobleme (Überprüfen Sie den Dienst Ausführen von Benutzerberechtigungen), Konfigurationsdateifehler (Überprüfung der Parametereinstellungen), Datenverzeichniskorruption (Wiederherstellung von Daten oder Wiederaufbautabellenraum), InnoDB-Tabellenraumprobleme (prüfen IBDATA1-Dateien), Plug-in-Ladeversagen (Überprüfen Sie Fehlerprotokolle). Wenn Sie Probleme lösen, sollten Sie sie anhand des Fehlerprotokolls analysieren, die Hauptursache des Problems finden und die Gewohnheit entwickeln, Daten regelmäßig zu unterstützen, um Probleme zu verhindern und zu lösen.

So optimieren Sie die Datenbankleistung nach der MySQL -Installation So optimieren Sie die Datenbankleistung nach der MySQL -Installation Apr 08, 2025 am 11:36 AM

Die MySQL -Leistungsoptimierung muss von drei Aspekten beginnen: Installationskonfiguration, Indexierung und Abfrageoptimierung, Überwachung und Abstimmung. 1. Nach der Installation müssen Sie die my.cnf -Datei entsprechend der Serverkonfiguration anpassen, z. 2. Erstellen Sie einen geeigneten Index, um übermäßige Indizes zu vermeiden und Abfrageanweisungen zu optimieren, z. B. den Befehl Erklärung zur Analyse des Ausführungsplans; 3. Verwenden Sie das eigene Überwachungstool von MySQL (ShowProcessList, Showstatus), um die Datenbankgesundheit zu überwachen und die Datenbank regelmäßig zu sichern und zu organisieren. Nur durch kontinuierliche Optimierung dieser Schritte kann die Leistung der MySQL -Datenbank verbessert werden.

See all articles