


Mit 35 Milliarden Parametern und offenen Gewichten brachte der Autor von Transformer nach der Gründung seines eigenen Unternehmens ein neues großes Modell auf den Markt.
Heute begrüßte Cohere, ein Startup für künstliche Intelligenz, das von Aidan Gomez, einem der Autoren von Transformer, mitbegründet wurde, die Veröffentlichung seines eigenen großen Modells.
Das neueste veröffentlichte Modell von Cohere trägt den Namen „Command-R“, verfügt über 35B Parameter und ist für die Bewältigung großer Produktionsauslastungen ausgelegt. Dieses Modell fällt in die Kategorie „skalierbar“ und bietet ein ausgewogenes Verhältnis zwischen hoher Effizienz und hoher Genauigkeit und hilft Unternehmensanwendern, über den Proof-of-Concept hinaus in die Produktion zu gelangen.
Command-R ist ein generatives Modell, das speziell für Retrieval Augmented Generation (RAG) und andere Aufgaben mit langem Kontext optimiert ist. Durch die Kombination externer APIs und Tools zielt dieses Modell darauf ab, die Leistung von RAG-Anwendungen zu verbessern. Es arbeitet mit branchenführenden Einbettungs- und Neuordnungsmodellen, um herausragende Leistung und erstklassige Integrationsfunktionen für Unternehmensanwendungsfälle bereitzustellen.
Command-R verwendet eine optimierte Transformatorarchitektur und ist ein autoregressives Sprachmodell. Nach Abschluss des Vortrainings wird durch überwachte Feinabstimmung (SFT) und Präferenztraining sichergestellt, dass das Modell mit den menschlichen Präferenzen übereinstimmt, um eine bessere Nützlichkeit und Sicherheit zu erreichen.
Im Einzelnen weist Command-R die folgenden Funktionsmerkmale auf:
- Hohe Genauigkeit bei RAG und Tool-Nutzung
- Geringe Latenz, hoher Durchsatz
- Längerer 128k-Kontext und niedrigerer Preis
- Leistungsstarke Funktionalität in 10 Hauptsprachen.
- Modellgewichte sind auf HuggingFace für Forschung und Evaluierung verfügbar.
Command-R ist derzeit auf der verwalteten API von Cohere verfügbar. Pläne für die baldige Verfügbarkeit bei großen Cloud-Anbietern. Diese Version ist die erste einer Reihe von Modellen, die darauf ausgelegt sind, Funktionen zu verbessern, die für die Masseneinführung in Unternehmen entscheidend sind.
Derzeit hat Cohere Modellgewichte auf Huggingface eröffnet.
Huggingface Adresse: https://huggingface.co/CohereForAI/c4ai-command-r-v01
High-performance Retrieval Enhancement Generation (RAG)
Retrieval Enhancement Generation. (RAG ) ist zu einem Schlüsselmuster bei der Bereitstellung großer Sprachmodelle geworden. Mit RAG können Unternehmen Modellen Zugriff auf privates Wissen gewähren, das andernfalls nicht verfügbar wäre, private Datenbanken durchsuchen und relevante Informationen zur Formulierung von Antworten verwenden, was die Genauigkeit und Nützlichkeit erheblich erhöht. Die Schlüsselkomponenten von RAG sind:
- Abruf: Durchsuchen Sie einen Korpus von Informationen, die für den Antwortbenutzer relevant sind.
- Augmented Generation: Verwenden Sie abgerufene Informationen, um fundiertere Antworten zu formulieren.
Beim Abruf verbessert das Embed-Modell von Cohere das kontextuelle und semantische Verständnis durch die Suche in Millionen oder sogar Milliarden von Dokumenten und erhöht so den Nutzen und die Genauigkeit des Abrufschritts erheblich. Gleichzeitig trägt das Rerank-Modell von Cohere dazu bei, den Wert der abgerufenen Informationen weiter zu steigern und die Ergebnisse für benutzerdefinierte Metriken wie Relevanz und Personalisierung zu optimieren.
Für die erweiterte Generierung kann Command-R durch die Identifizierung der relevantesten Informationen diese Informationen zusammenfassen, analysieren und verpacken und Mitarbeitern dabei helfen, die Arbeitseffizienz zu verbessern oder neue Produkterlebnisse zu schaffen. Command-R ist insofern einzigartig, als die Ausgabe des Modells klare Zitate enthält, wodurch das Risiko von Halluzinationen verringert und mehr Kontext aus dem Quellmaterial wiedergegeben wird.
Auch ohne die Verwendung eigener Embed- und Rerank-Modelle übertrifft Command-R andere Modelle in der Kategorie der skalierbaren generativen Modelle. Bei gemeinsamer Verwendung vergrößert sich der Vorsprung jedoch erheblich und ermöglicht eine höhere Leistung in komplexeren Bereichen.
Das Bild unten links zeigt, wie Command-R und Mixtral eine umfassende direkte direkte Bewertung der menschlichen Präferenzen für eine Reihe unternehmensbezogener RAG-Anwendungen durchführen und dabei Sprachkompetenz, Praktikabilität der Antworten und Zitate berücksichtigen. Die rechte Seite der Abbildung zeigt die Vergleichsergebnisse von Command-R (Embed+Rerank), Command-R und Llama 2 70B (Chat), Mixtral, GPT3.5-Turbo und anderen Modellen bei Benchmarks wie Natural Questions, TriviaQA und HotpotQA. Das große Modell von Cohere übernimmt die Führung.
Leistungsstarke Werkzeugnutzung
Große Sprachmodelle sollten zentrale Inferenzmaschinen sein, die Aufgaben automatisieren und echte Aktionen ausführen können, und nicht nur Maschinen, die Text extrahieren und generieren. Command-R erreicht dieses Ziel durch den Einsatz von Tools (APIs) wie Code-Interpretern und anderen benutzerdefinierten Tools, die es Modellen ermöglichen, hochkomplexe Aufgaben zu automatisieren.
Die Funktion „Tool Use“ ermöglicht es Unternehmensentwicklern, Command-R in eine Engine zu verwandeln, um Aufgaben und Arbeitsabläufe zu unterstützen, die die Verwendung „interner Infrastruktur wie Datenbanken und Softwaretools“ sowie „externer Tools wie CRMs und Suchmaschinen“ erfordern „Automatisierung. Dadurch können wir zeitaufwändige manuelle Aufgaben automatisieren, die sich über mehrere Systeme erstrecken und komplexe Überlegungen und Entscheidungen erfordern.
Das Bild unten zeigt den Vergleich der mehrstufigen Argumentationsfunktionen zwischen Command-R und Llama 2 70B (Chat), Mixtral und GPT3.5-turbo bei Verwendung von Suchtools. Die hier verwendeten Datensätze sind HotpotQA und Bamboogle.
Funktionen zur Generierung mehrerer Sprachen
Das Command-R-Modell beherrscht 10 wichtige Geschäftssprachen auf der ganzen Welt, darunter Englisch, Französisch, Spanisch, Italienisch, Deutsch, Portugiesisch, Japanisch, Koreanisch, Arabisch und Chinesisch.
Darüber hinaus unterstützen die Embed- und Rerank-Modelle von Cohere nativ über 100 Sprachen. Dies ermöglicht es Benutzern, Antworten aus einer Vielzahl von Datenquellen zu ziehen und unabhängig von der Sprache klare und genaue Gespräche in ihrer Muttersprache zu führen.
Das Bild unten zeigt den Vergleich zwischen Command-R und Llama 2 70B (Chat), Mixtral, GPT3.5-Turbo auf mehrsprachigem MMLU und FLORES.
Längerer Kontext und niedrigerer Preis
Command-R unterstützt längere Kontextfenster – 128.000 Token. Das Upgrade senkt außerdem den Preis der verwalteten APIs von Cohere und erhöht die Effizienz der privaten Cloud-Bereitstellungen von Cohere erheblich. Durch die Kombination eines längeren Kontextfensters mit günstigeren Preisen erschließt Command-R RAG-Anwendungsfälle, bei denen zusätzlicher Kontext die Leistung erheblich verbessern kann.
Die konkreten Preise sind wie folgt: Die Command-Version kostet 1 USD für 1 Million Eingabe-Tokens und 2 USD für 1 Million Ausgabe-Tokens; die Command-R-Version kostet 0,5 USD für 1 Million Eingabe-Tokens und 1,5 USD USD für 1 Million Ausgabetoken.
Bald wird Cohere auch einen kurzen technischen Bericht veröffentlichen, um weitere Modelldetails zu zeigen.
Blog-Adresse: https://txt.cohere.com/command-r/
Das obige ist der detaillierte Inhalt vonMit 35 Milliarden Parametern und offenen Gewichten brachte der Autor von Transformer nach der Gründung seines eigenen Unternehmens ein neues großes Modell auf den Markt.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



DDREASE ist ein Tool zum Wiederherstellen von Daten von Datei- oder Blockgeräten wie Festplatten, SSDs, RAM-Disks, CDs, DVDs und USB-Speichergeräten. Es kopiert Daten von einem Blockgerät auf ein anderes, wobei beschädigte Blöcke zurückbleiben und nur gute Blöcke verschoben werden. ddreasue ist ein leistungsstarkes Wiederherstellungstool, das vollständig automatisiert ist, da es während der Wiederherstellungsvorgänge keine Unterbrechungen erfordert. Darüber hinaus kann es dank der ddasue-Map-Datei jederzeit gestoppt und fortgesetzt werden. Weitere wichtige Funktionen von DDREASE sind: Es überschreibt die wiederhergestellten Daten nicht, füllt aber die Lücken im Falle einer iterativen Wiederherstellung. Es kann jedoch gekürzt werden, wenn das Tool explizit dazu aufgefordert wird. Stellen Sie Daten aus mehreren Dateien oder Blöcken in einer einzigen wieder her

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Was? Wird Zootopia durch heimische KI in die Realität umgesetzt? Zusammen mit dem Video wird ein neues groß angelegtes inländisches Videogenerationsmodell namens „Keling“ vorgestellt. Sora geht einen ähnlichen technischen Weg und kombiniert eine Reihe selbst entwickelter technologischer Innovationen, um Videos zu produzieren, die nicht nur große und vernünftige Bewegungen aufweisen, sondern auch die Eigenschaften der physischen Welt simulieren und über starke konzeptionelle Kombinationsfähigkeiten und Vorstellungskraft verfügen. Den Daten zufolge unterstützt Keling die Erstellung ultralanger Videos von bis zu 2 Minuten mit 30 Bildern pro Sekunde, mit Auflösungen von bis zu 1080p und unterstützt mehrere Seitenverhältnisse. Ein weiterer wichtiger Punkt ist, dass es sich bei Keling nicht um eine vom Labor veröffentlichte Demo oder Video-Ergebnisdemonstration handelt, sondern um eine Anwendung auf Produktebene, die von Kuaishou, einem führenden Anbieter im Bereich Kurzvideos, gestartet wurde. Darüber hinaus liegt das Hauptaugenmerk darauf, pragmatisch zu sein, keine Blankoschecks auszustellen und sofort nach der Veröffentlichung online zu gehen. Das große Modell von Ke Ling wurde bereits in Kuaiying veröffentlicht.

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Kürzlich wurde die Militärwelt von der Nachricht überwältigt: US-Militärkampfflugzeuge können jetzt mithilfe von KI vollautomatische Luftkämpfe absolvieren. Ja, erst kürzlich wurde der KI-Kampfjet des US-Militärs zum ersten Mal der Öffentlichkeit zugänglich gemacht und sein Geheimnis gelüftet. Der vollständige Name dieses Jägers lautet „Variable Stability Simulator Test Aircraft“ (VISTA). Er wurde vom Minister der US-Luftwaffe persönlich geflogen, um einen Eins-gegen-eins-Luftkampf zu simulieren. Am 2. Mai startete US-Luftwaffenminister Frank Kendall mit einer X-62AVISTA auf der Edwards Air Force Base. Beachten Sie, dass während des einstündigen Fluges alle Flugaktionen autonom von der KI durchgeführt wurden! Kendall sagte: „In den letzten Jahrzehnten haben wir über das unbegrenzte Potenzial des autonomen Luft-Luft-Kampfes nachgedacht, aber es schien immer unerreichbar.“ Nun jedoch,
