Inhaltsverzeichnis
Binärdaten: die grundlegende DNA, die die digitale Welt ausmacht
Von Bytes zu allem: Grenzen durchbrechen und auf eine einheitliche Datenmodellierung zusteuern
Heim Technologie-Peripheriegeräte KI Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!

Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!

Mar 13, 2024 pm 07:20 PM
模型 训练 模拟器

Die neueste bGPT-Errungenschaft von Microsoft Research Asia, dieses bytebasierte Transformer-Modell, öffnet uns eine neue Tür zur Erkundung der digitalen Welt.

Im Gegensatz zu herkömmlichen, auf Vokabeln basierenden Sprachmodellen ist bGPT insofern einzigartig, als es rohe Binärdaten direkt verarbeiten kann, ohne durch bestimmte Formate oder Aufgaben eingeschränkt zu sein. Ziel ist es, die digitale Welt vollständig zu simulieren und so neue Möglichkeiten für die Modellentwicklung zu eröffnen.

Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!

Papier: https://www.php.cn/link/ee88b3cea2051be97bcddf2e0d9a28f6

Code: https://www .php. cn/link/359499f804ea7988921bf86c9377fb95

Modell: https://www.php.cn/link/4b459ea1a5917be436df5f0bd5b3c4ad

Projekthomepage: https://www.php.cn/link/71af596 14c 8b42af334933e9261e53be

In ihrer Forschungsarbeit zeigte das Forschungsteam das enorme Potenzial von bGPT für die Modellierung auf. Durch die Verarbeitung auf Byte-Ebene kann bGPT nicht nur Text, Bilder und Audio generieren, sondern auch das Computerverhalten simulieren, einschließlich Formatkonvertierungsalgorithmen und Modellierung von CPU-Zuständen. Dieser Ansatz, alle Daten als eine Folge von Bytes zu behandeln, ermöglicht es bGPT, verschiedene Datentypen in dasselbe Framework zu integrieren.

Nach seiner Veröffentlichung löste das Papier von bGPT eine breite Diskussion auf

Binärdaten: die grundlegende DNA, die die digitale Welt ausmacht

Binärdaten sind der Grundstein der digitalen Welt. Sie durchlaufen Computerprozessoren und die Betriebssysteme der elektronischen Produkte, die wir täglich verwenden, und sind der Kern von allem Daten, Geräte und Software. Auf dieser Grundlage besteht das Ziel von bGPT daher darin, die interne Logik digitaler Systeme durch die Untersuchung binärer Datensequenzen zu verstehen und dadurch verschiedene komplexe digitale Phänomene umzuformen und zu simulieren.

bGPT kann nicht nur auf herkömmliche KI-Generierungs- und Verständnisaufgaben durch Verarbeitung auf Byteebene angewendet werden, sondern kann auch weniger traditionelle Anwendungen verarbeiten. Es kann beispielsweise MIDI direkt simulieren – ein Standardformat für die Übertragung und Speicherung von Musik, dessen direkte Modellierung in früheren Untersuchungen aufgrund der binären Natur von MIDI vermieden wurde.

Aber bGPT eignet sich natürlich für solche Aufgaben und kann den Konvertierungsalgorithmus von Musikdaten genau simulieren, wodurch eine extrem niedrige Fehlerrate (0,0011 BPB) bei der Konvertierung der ABC-Notation in das MIDI-Format erreicht wird.

In praktischen Anwendungen ist bGPT normalerweise in der Lage, die Konvertierung zwischen ABC-Symbolen und MIDI-Dateien genau durchzuführen und kann manchmal sogar Fehler in den Originaldateien korrigieren, um die Musikkonvertierung genauer zu machen.

Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!


bGPT konvertiert die ABC-Notation automatisch in das MIDI-Format (oben). Der Vergleich mit den Original-MIDI-Daten (unten) verdeutlicht den wesentlichen Unterschied: Obwohl den Original-MIDI-Daten ein Takt fehlt (siehe Bild unten). ), wodurch die Akkordbegleitung getrennt wird, aber das von bGPT konvertierte Ergebnis (siehe Bild oben) füllt diese Lücke korrekt und stellt die Glätte der Akkordbegleitung sicher.

Das Forschungsteam betrachtet die CPU-Modellierung auch als eine repräsentative Aufgabe der Hardware-Verhaltenssimulation: Diese Aufgabe erfordert, dass das Modell eine Folge von Maschinenanweisungen auf niedriger Ebene als Eingabe erhält, und ihr Ziel ist es, den CPU-Zustand genau vorherzusagen wird nach der Ausführung jeder Anweisung aktualisiert, bis das Programm stoppt.

Bei dieser Aufgabe zeigte bGPT eine Genauigkeit von über 99,99 % und demonstrierte damit die Leistungsfähigkeit und Skalierbarkeit des Byte-Modells bei der Verarbeitung nativer Binärdaten.

Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!

Angesichts des Programms und des anfänglichen CPU-Status ist bGPT in der Lage, den gesamten Prozess der CPU-Ausführung bis zur Programmbeendigung genau vorherzusagen. In diesem Beispiel verarbeitet bGPT alle CPU-Anweisungen korrekt. Zum besseren Verständnis wird die tatsächliche Bytefolge in ein besser lesbares Format umgewandelt.

Von Bytes zu allem: Grenzen durchbrechen und auf eine einheitliche Datenmodellierung zusteuern

bGPT kann nicht nur native Binärdaten verarbeiten, sondern auch mehrere Datentypen in eine einheitliche Modellarchitektur integrieren und alle Daten als Bytefolge behandeln.

Dieser Ansatz vereinfacht nicht nur den Datenmodellierungsprozess, sondern macht auch die Integration aus beliebigen Datenquellen zum Kinderspiel, ohne dass Modelle für bestimmte Datentypen angepasst werden müssen.

Das Forschungsteam nannte in dem Artikel Beispiele für traditionelle Text-, Bild- und Audiodateien und demonstrierte damit die Fähigkeiten von bGPT bei der einheitlichen Datenmodellierung. Das von ihnen trainierte bGPT-Modell verfügt über etwa 100 Millionen Parameter.

Experimentelle Ergebnisse zeigen, dass bGPT im Vergleich mit Modellen der gleichen Größe wie GPT-2 (Textmodell), ViT (visuelles Modell) und AST (Audiomodell) eine vergleichbare Leistung bei verschiedenen Datentypen zeigt.

bGPT schneidet bei der Textgenerierung sehr gut ab. Dank seiner Textkodierung auf Byte-Ebene ist das Modell nicht auf Vokabular angewiesen und kann daher alle Sprachen unterstützen.

Seine mehrschichtige Transformer-Architektur kann, obwohl der Rechenaufwand GPT-2 ähnelt, Text mit einer Größe von bis zu 8 KB generieren, was die Längenbeschränkung von GPT-2 deutlich überschreitet. Nach dem Vortraining anhand von Wikipedia-Daten ist der von bGPT generierte Text sowohl im Stil als auch im Thema mit GPT-2 vergleichbar, was seine leistungsstarke Fähigkeit bei der Textgenerierung unter Beweis stellt.

bGPT ist auf dem Wikipedia-Datensatz vorab trainiert und die Qualität und Themenkonsistenz der generierten Textbeispiele sind mit GPT-2 vergleichbar.

bGPT kann Bilder erzeugen, indem es das nächste Byte in einer Folge von Bildbytes vorhersagt. Das Modell ist auf dem ImageNet-Datensatz vorab trainiert und die generierten Bilder haben eine Auflösung von 32 x 32 Pixel.

Obwohl es schwierig ist, die zweidimensionale räumliche Beziehung von Bildern durch Bytesequenzen im aktuellen Maßstab genau zu erfassen, was zu Artefakten und Rauschen in den erzeugten Bildern führt, sind Textur sowie Licht- und Schatteneffekte normalerweise relativ genau.

Darüber hinaus können diese generierten Bilder normal in BMP-Dateien dekodiert werden. Das Forschungsteam wies darauf hin, dass durch die Erweiterung des bGPT-Maßstabs, ähnlich der von OpenAI entwickelten Methode zur Pixelsequenzmodellierung von iGPT, möglicherweise eine höhere Qualität und eine realistischere Bilderzeugung erreicht werden kann.

Dies ist eine Reihe von Bildern, die von bGPT generiert und auf dem ImageNet-Datensatz vorab trainiert wurden. Während die Textur und die Lichteffekte der Bilder im Allgemeinen genau sind, kann es schwierig sein, die Hauptobjekte in diesen generierten Bildern zu identifizieren.

bGPT behandelt Audiodaten als Bytesequenz und kann 1 Sekunde lange Audiosamples mit einer Abtastrate von 8000 Hz erzeugen.

Das Modell wurde am LibriSpeech-Datensatz vorab trainiert und am Speech Commands v2-Datensatz weiter verfeinert und demonstriert. Die von bGPT erzeugten Audio-Samples weisen ein hohes Maß an Genauigkeit auf, wobei einige Samples kaum von echtem Audio zu unterscheiden sind. Im Folgenden finden Sie eine Reihe von Beispielen, die die Fähigkeiten von bGPT im Bereich der Audioerzeugung demonstrieren.

Entdecken Sie die digitale Welt der Bytes mit bGPT

Traditionelle Sprachmodelle, egal wie leistungsfähig sie sind, konzentrieren sich hauptsächlich auf die Verarbeitung natürlichsprachlicher Texte. Das bGPT-Modell durchbricht die Einschränkung der Textverarbeitung durch einen bytebasierten Verarbeitungsmechanismus und eröffnet eine neue Datenverarbeitungskategorie.

Diese Weiterentwicklung gibt bGPT die Möglichkeit, verschiedene Datentypen, einschließlich Text, Bilder, Audio und sogar native Binärdaten von Algorithmen und Hardware, nahtlos zu verarbeiten und ebnet so den Weg für eine umfassende Simulation und ein umfassendes Verständnis der digitalen Welt.

Obwohl bGPT überzeugende Fähigkeiten gezeigt hat, weist es Einschränkungen hinsichtlich des Rechenaufwands auf, z. B. ist es derzeit nur in der Lage, Bytesequenzen von bis zu 8 KB auf herkömmlichen Grafikkarten zu verarbeiten. Für diejenigen, die große Mengen generieren oder verarbeiten müssen Daten, In Bezug auf die Anwendung gibt es offensichtliche Einschränkungen. Zukünftige Arbeitspläne werden sich auf die Entwicklung effizienterer Algorithmen und die Nutzung von Fortschritten in der Hardware konzentrieren, um die Fähigkeit zur Verarbeitung größerer Datensequenzen zu verbessern.

Technologiebegeisterte auf der ganzen Welt freuen sich auf das zukünftige Potenzial von bGPT, von der Optimierung der Netzwerkbereinigung und des Selbstlernens bis hin zu den Selbstrekonfigurationsfähigkeiten sehr großer Netzwerke. Diese Diskussionen weisen auf eine Gemeinsamkeit hin Vision: bGPT könnte schließlich ein einheitliches Modell realisieren, das alle Arten von Byte-Daten verarbeiten und ausgeben kann und so zu einem wirklich umfassenden Simulator der digitalen Welt wird.

Wird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!

Das Forschungsteam hat den Code und das Modell von bGPT als Open Source bereitgestellt. Dies bedeutet, dass Sie bGPT direkt auf Ihrem eigenen Datensatz trainieren können, ohne Anpassungen an der Modellarchitektur vorzunehmen, und die breiten Perspektiven von Byte-Modellen im digitalen Bereich erkunden können.

Das obige ist der detaillierte Inhalt vonWird LLM Geschichte? Open-Source-bGPT kann das Deep-Learning-Paradigma untergraben: Binärdateien direkt simulieren und so eine neue Ära der analogen digitalen Welt eröffnen!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Einführung in die Verwendung des Joiplay-Simulators Einführung in die Verwendung des Joiplay-Simulators May 04, 2024 pm 06:40 PM

Der Jojplay-Simulator ist ein sehr einfach zu bedienender Mobiltelefonsimulator. Er unterstützt Computerspiele und kann auf Mobiltelefonen ausgeführt werden. Einige Spieler wissen nicht, wie man ihn verwendet wie man es benutzt. So verwenden Sie den Joiplay-Simulator 1. Zuerst müssen Sie den Joiplay-Body und das RPGM-Plug-in herunterladen. Am besten installieren Sie sie in der Reihenfolge Body – Plug-in. Das APK-Paket erhalten Sie in der Joiplay-Leiste. Klicken Sie hier, um >>> zu erhalten. 2. Nachdem Android fertig ist, können Sie in der unteren linken Ecke Spiele hinzufügen. 3. Geben Sie den Namen nach und nach ein und drücken Sie bei der ausführbaren Datei auf „Auswählen“, um die Datei „game.exe“ des Spiels auszuwählen. 4. Das Symbol kann leer bleiben oder Sie können Ihr Lieblingsbild auswählen.

Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo Das weltweit leistungsstärkste Open-Source-MoE-Modell ist da, mit chinesischen Fähigkeiten, die mit GPT-4 vergleichbar sind, und der Preis beträgt nur fast ein Prozent von GPT-4-Turbo May 07, 2024 pm 04:13 PM

Stellen Sie sich ein Modell der künstlichen Intelligenz vor, das nicht nur die Fähigkeit besitzt, die traditionelle Datenverarbeitung zu übertreffen, sondern auch eine effizientere Leistung zu geringeren Kosten erzielt. Dies ist keine Science-Fiction, DeepSeek-V2[1], das weltweit leistungsstärkste Open-Source-MoE-Modell, ist da. DeepSeek-V2 ist ein leistungsstarkes MoE-Sprachmodell (Mix of Experts) mit den Merkmalen eines wirtschaftlichen Trainings und einer effizienten Inferenz. Es besteht aus 236B Parametern, von denen 21B zur Aktivierung jedes Markers verwendet werden. Im Vergleich zu DeepSeek67B bietet DeepSeek-V2 eine stärkere Leistung, spart gleichzeitig 42,5 % der Trainingskosten, reduziert den KV-Cache um 93,3 % und erhöht den maximalen Generierungsdurchsatz auf das 5,76-fache. DeepSeek ist ein Unternehmen, das sich mit allgemeiner künstlicher Intelligenz beschäftigt

Leitfaden für den Lebensneustart-Simulator Leitfaden für den Lebensneustart-Simulator May 07, 2024 pm 05:28 PM

Life Restart Simulator ist ein sehr interessantes Simulationsspiel. Es gibt viele Möglichkeiten, das Spiel zu spielen. Schauen Sie sich das Spiel an Strategien gibt es? Life Restart Simulator-Anleitung Anleitung Funktionen von Life Restart Simulator Dies ist ein sehr kreatives Spiel, in dem Spieler nach ihren eigenen Vorstellungen spielen können. Es gibt jeden Tag viele Aufgaben zu erledigen und Sie können ein neues Leben in dieser virtuellen Welt genießen. Es gibt viele Lieder im Spiel und alle möglichen Leben warten darauf, von Ihnen erlebt zu werden. Spielinhalt des Life Restart Simulators Talent-Zeichnungskarten: Talent: Sie müssen die geheimnisvolle kleine Kiste auswählen, um ein Unsterblicher zu werden. Um ein Absterben auf halbem Weg zu vermeiden, sind verschiedene kleine Kapseln erhältlich. Cthulhu kann wählen

KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert KAN, das MLP ersetzt, wurde durch Open-Source-Projekte auf Faltung erweitert Jun 01, 2024 pm 10:03 PM

Anfang dieses Monats schlugen Forscher des MIT und anderer Institutionen eine vielversprechende Alternative zu MLP vor – KAN. KAN übertrifft MLP in Bezug auf Genauigkeit und Interpretierbarkeit. Und es kann MLP, das mit einer größeren Anzahl von Parametern ausgeführt wird, mit einer sehr kleinen Anzahl von Parametern übertreffen. Beispielsweise gaben die Autoren an, dass sie KAN nutzten, um die Ergebnisse von DeepMind mit einem kleineren Netzwerk und einem höheren Automatisierungsgrad zu reproduzieren. Konkret verfügt DeepMinds MLP über etwa 300.000 Parameter, während KAN nur etwa 200 Parameter hat. KAN hat eine starke mathematische Grundlage wie MLP und basiert auf dem universellen Approximationssatz, während KAN auf dem Kolmogorov-Arnold-Darstellungssatz basiert. Wie in der folgenden Abbildung gezeigt, hat KAN

Die Kuaishou-Version von Sora „Ke Ling' steht zum Testen offen: Sie generiert über 120 Sekunden Videos, versteht die Physik besser und kann komplexe Bewegungen genau modellieren Die Kuaishou-Version von Sora „Ke Ling' steht zum Testen offen: Sie generiert über 120 Sekunden Videos, versteht die Physik besser und kann komplexe Bewegungen genau modellieren Jun 11, 2024 am 09:51 AM

Was? Wird Zootopia durch heimische KI in die Realität umgesetzt? Zusammen mit dem Video wird ein neues groß angelegtes inländisches Videogenerationsmodell namens „Keling“ vorgestellt. Sora geht einen ähnlichen technischen Weg und kombiniert eine Reihe selbst entwickelter technologischer Innovationen, um Videos zu produzieren, die nicht nur große und vernünftige Bewegungen aufweisen, sondern auch die Eigenschaften der physischen Welt simulieren und über starke konzeptionelle Kombinationsfähigkeiten und Vorstellungskraft verfügen. Den Daten zufolge unterstützt Keling die Erstellung ultralanger Videos von bis zu 2 Minuten mit 30 Bildern pro Sekunde, mit Auflösungen von bis zu 1080p und unterstützt mehrere Seitenverhältnisse. Ein weiterer wichtiger Punkt ist, dass es sich bei Keling nicht um eine vom Labor veröffentlichte Demo oder Video-Ergebnisdemonstration handelt, sondern um eine Anwendung auf Produktebene, die von Kuaishou, einem führenden Anbieter im Bereich Kurzvideos, gestartet wurde. Darüber hinaus liegt das Hauptaugenmerk darauf, pragmatisch zu sein, keine Blankoschecks auszustellen und sofort nach der Veröffentlichung online zu gehen. Das große Modell von Ke Ling wurde bereits in Kuaiying veröffentlicht.

Die U.S. Air Force präsentiert ihren ersten KI-Kampfjet mit großem Aufsehen! Der Minister führte die Testfahrt persönlich durch, ohne in den gesamten Prozess einzugreifen, und 100.000 Codezeilen wurden 21 Mal getestet. Die U.S. Air Force präsentiert ihren ersten KI-Kampfjet mit großem Aufsehen! Der Minister führte die Testfahrt persönlich durch, ohne in den gesamten Prozess einzugreifen, und 100.000 Codezeilen wurden 21 Mal getestet. May 07, 2024 pm 05:00 PM

Kürzlich wurde die Militärwelt von der Nachricht überwältigt: US-Militärkampfflugzeuge können jetzt mithilfe von KI vollautomatische Luftkämpfe absolvieren. Ja, erst kürzlich wurde der KI-Kampfjet des US-Militärs zum ersten Mal der Öffentlichkeit zugänglich gemacht und sein Geheimnis gelüftet. Der vollständige Name dieses Jägers lautet „Variable Stability Simulator Test Aircraft“ (VISTA). Er wurde vom Minister der US-Luftwaffe persönlich geflogen, um einen Eins-gegen-eins-Luftkampf zu simulieren. Am 2. Mai startete US-Luftwaffenminister Frank Kendall mit einer X-62AVISTA auf der Edwards Air Force Base. Beachten Sie, dass während des einstündigen Fluges alle Flugaktionen autonom von der KI durchgeführt wurden! Kendall sagte: „In den letzten Jahrzehnten haben wir über das unbegrenzte Potenzial des autonomen Luft-Luft-Kampfes nachgedacht, aber es schien immer unerreichbar.“ Nun jedoch,

Einführung in die Schriftarteinstellungsmethode des Joiplay-Simulators Einführung in die Schriftarteinstellungsmethode des Joiplay-Simulators May 09, 2024 am 08:31 AM

Der Jojplay-Simulator kann die Schriftarten des Spiels tatsächlich anpassen und das Problem fehlender Zeichen und umrahmter Zeichen im Text lösen. Ich vermute, dass viele Spieler immer noch nicht wissen, wie man ihn bedient Schriftart des Jojplay-Simulators vorstellen. So legen Sie die Schriftart des Joiplay-Simulators fest: 1. Öffnen Sie zunächst den Joiplay-Simulator, klicken Sie auf die Einstellungen (drei Punkte) in der oberen rechten Ecke und suchen Sie ihn. 2. Klicken Sie in der Spalte „RPGMSettings“ auf die benutzerdefinierte Schriftart „CustomFont“ in der dritten Zeile, um sie auszuwählen. 3. Wählen Sie die Schriftartdatei aus und klicken Sie auf „OK“. Klicken Sie nicht auf das Symbol „Speichern“ in der unteren rechten Ecke, da sonst die Standardeinstellungen wiederhergestellt werden. 4. Empfehlen Sie Founder und Quasi-Yuan Simplified Chinese (bereits in den Ordnern der Spiele Fuxing und Rebirth). joi

Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! Tesla-Roboter arbeiten in Fabriken, Musk: Der Freiheitsgrad der Hände wird dieses Jahr 22 erreichen! May 06, 2024 pm 04:13 PM

Das neueste Video von Teslas Roboter Optimus ist veröffentlicht und er kann bereits in der Fabrik arbeiten. Bei normaler Geschwindigkeit sortiert es Batterien (Teslas 4680-Batterien) so: Der Beamte hat auch veröffentlicht, wie es bei 20-facher Geschwindigkeit aussieht – auf einer kleinen „Workstation“, pflücken und pflücken und pflücken: Dieses Mal wird es freigegeben. Eines der Highlights Der Vorteil des Videos besteht darin, dass Optimus diese Arbeit in der Fabrik völlig autonom und ohne menschliches Eingreifen während des gesamten Prozesses erledigt. Und aus Sicht von Optimus kann es auch die krumme Batterie aufnehmen und platzieren, wobei der Schwerpunkt auf der automatischen Fehlerkorrektur liegt: In Bezug auf die Hand von Optimus gab der NVIDIA-Wissenschaftler Jim Fan eine hohe Bewertung ab: Die Hand von Optimus ist der fünffingrige Roboter der Welt am geschicktesten. Seine Hände sind nicht nur taktil

See all articles