用Twitter的cursor方式进行Web数据分页_MySQL
bitsCN.com
本文讨论Web应用中实现数据分页功能,不同的技术实现方式的性能方区别。
上图功能的技术实现方法拿MySQL来举例就是
select * from msgs where thread_id = ? limit page * count, count
不过在看Twitter API的时候,我们却发现不少接口使用cursor的方法,而不用page, count这样直观的形式,如 followers ids 接口
URL:
http://twitter.com/followers/ids.format
Returns an array of numeric IDs for every user following the specified user.
Parameters:
* cursor. Required. Breaks the results into pages. Provide a value of -1 to begin paging. Provide values as returned to in the response body’s next_cursor and previous_cursor attributes to page back and forth in the list.
o Example: http://twitter.com/followers/ids/barackobama.xml?cursor=-1
o Example: http://twitter.com/followers/ids/barackobama.xml?cursor=-1300794057949944903
从上面描述可以看到,http://twitter.com/followers/ids.xml 这个调用需要传cursor参数来进行分页,而不是传统的 url?page=n&count=n的形式。这样做有什么优点呢?是否让每个cursor保持一个当时数据集的镜像?防止由于结果集实时改变而产生查询结果有重复内容?
在Google Groups这篇Cursor Expiration讨论中Twitter的架构师John Kalucki提到
A cursor is an opaque deletion-tolerant index into a Btree keyed by source
userid and modification time. It brings you to a point in time in the
reverse chron sorted list. So, since you can’t change the past, other than
erasing it, it’s effectively stable. (Modifications bubble to the top.) But
you have to deal with additions at the list head and also block shrinkage
due to deletions, so your blocks begin to overlap quite a bit as the data
ages. (If you cache cursors and read much later, you’ll see the first few
rows of cursor[n+1]’s block as duplicates of the last rows of cursor[n]’s
block. The intersection cardinality is equal to the number of deletions in
cursor[n]’s block). Still, there may be value in caching these cursors and
then heuristically rebalancing them when the overlap proportion crosses some
threshold.
在另外一篇new cursor-based pagination not multithread-friendly中John又提到
The page based approach does not scale with large sets. We can no
longer support this kind of API without throwing a painful number of
503s.
Working with row-counts forces the data store to recount rows in an O
(n^2) manner. Cursors avoid this issue by allowing practically
constant time access to the next block. The cost becomes O(n/
block_size) which, yes, is O(n), but a graceful one given n
a block_size of 5000. The cursor approach provides a more complete and
consistent result set.
Proportionally, very few users require multiple page fetches with a
page size of 5,000.
Also, scraping the social graph repeatedly at high speed is could
often be considered a low-value, borderline abusive use of the social
graph API.
通过这两段文字我们已经很清楚了,对于大结果集的数据,使用cursor方式的目的主要是为了极大地提高性能。还是拿MySQL为例说明,比如翻页到100,000条时,不用cursor,对应的SQL为
select * from msgs limit 100000, 100
在一个百万记录的表上,第一次执行这条SQL需要5秒以上。
假定我们使用表的主键的值作为cursor_id, 使用cursor分页方式对应的SQL可以优化为
select * from msgs where id > cursor_id limit 100;
同样的表中,通常只需要100ms以下, 效率会提高几十倍。MySQL limit性能差别也可参看我3年前写的一篇不成熟的文章 MySQL LIMIT 的性能问题。
结论
建议Web应用中大数据集翻页可以采用这种cursor方式,不过此方法缺点是翻页时必须连续,不能跳页。
bitsCN.com
Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Der Artikel von StableDiffusion3 ist endlich da! Dieses Modell wurde vor zwei Wochen veröffentlicht und verwendet die gleiche DiT-Architektur (DiffusionTransformer) wie Sora. Nach seiner Veröffentlichung sorgte es für großes Aufsehen. Im Vergleich zur Vorgängerversion wurde die Qualität der von StableDiffusion3 generierten Bilder erheblich verbessert. Es unterstützt jetzt Eingabeaufforderungen mit mehreren Themen, und der Textschreibeffekt wurde ebenfalls verbessert, und es werden keine verstümmelten Zeichen mehr angezeigt. StabilityAI wies darauf hin, dass es sich bei StableDiffusion3 um eine Reihe von Modellen mit Parametergrößen von 800 M bis 8 B handelt. Durch diesen Parameterbereich kann das Modell direkt auf vielen tragbaren Geräten ausgeführt werden, wodurch der Einsatz von KI deutlich reduziert wird

Die Trajektorienvorhersage spielt eine wichtige Rolle beim autonomen Fahren. Unter autonomer Fahrtrajektorienvorhersage versteht man die Vorhersage der zukünftigen Fahrtrajektorie des Fahrzeugs durch die Analyse verschiedener Daten während des Fahrvorgangs. Als Kernmodul des autonomen Fahrens ist die Qualität der Trajektorienvorhersage von entscheidender Bedeutung für die nachgelagerte Planungssteuerung. Die Trajektorienvorhersageaufgabe verfügt über einen umfangreichen Technologie-Stack und erfordert Vertrautheit mit der dynamischen/statischen Wahrnehmung des autonomen Fahrens, hochpräzisen Karten, Fahrspurlinien, Fähigkeiten in der neuronalen Netzwerkarchitektur (CNN&GNN&Transformer) usw. Der Einstieg ist sehr schwierig! Viele Fans hoffen, so schnell wie möglich mit der Flugbahnvorhersage beginnen zu können und Fallstricke zu vermeiden. Heute werde ich eine Bestandsaufnahme einiger häufiger Probleme und einführender Lernmethoden für die Flugbahnvorhersage machen! Einführungsbezogenes Wissen 1. Sind die Vorschaupapiere in Ordnung? A: Schauen Sie sich zuerst die Umfrage an, S

In diesem Artikel wird das Problem der genauen Erkennung von Objekten aus verschiedenen Blickwinkeln (z. B. Perspektive und Vogelperspektive) beim autonomen Fahren untersucht, insbesondere wie die Transformation von Merkmalen aus der Perspektive (PV) in den Raum aus der Vogelperspektive (BEV) effektiv ist implementiert über das Modul Visual Transformation (VT). Bestehende Methoden lassen sich grob in zwei Strategien unterteilen: 2D-zu-3D- und 3D-zu-2D-Konvertierung. 2D-zu-3D-Methoden verbessern dichte 2D-Merkmale durch die Vorhersage von Tiefenwahrscheinlichkeiten, aber die inhärente Unsicherheit von Tiefenvorhersagen, insbesondere in entfernten Regionen, kann zu Ungenauigkeiten führen. Während 3D-zu-2D-Methoden normalerweise 3D-Abfragen verwenden, um 2D-Features abzutasten und die Aufmerksamkeitsgewichte der Korrespondenz zwischen 3D- und 2D-Features über einen Transformer zu lernen, erhöht sich die Rechen- und Bereitstellungszeit.

Die schnelle Entwicklung der Blockchain -Technologie hat die Notwendigkeit zuverlässiger und effizienter analytischer Tools ermöglicht. Diese Tools sind wichtig, um wertvolle Erkenntnisse aus Blockchain -Transaktionen zu entfernen, um ihr Potenzial besser zu verstehen und zu nutzen. In diesem Artikel werden einige der führenden Tools für Blockchain -Datenanalyse auf dem Markt untersucht, einschließlich ihrer Fähigkeiten, Vorteile und Einschränkungen. Durch das Verständnis dieser Tools können Benutzer die erforderlichen Erkenntnisse gewinnen, um die Möglichkeiten der Blockchain -Technologie zu maximieren.

Am 23. September wurde das Papier „DeepModelFusion:ASurvey“ von der National University of Defense Technology, JD.com und dem Beijing Institute of Technology veröffentlicht. Deep Model Fusion/Merging ist eine neue Technologie, die die Parameter oder Vorhersagen mehrerer Deep-Learning-Modelle in einem einzigen Modell kombiniert. Es kombiniert die Fähigkeiten verschiedener Modelle, um die Verzerrungen und Fehler einzelner Modelle zu kompensieren und so eine bessere Leistung zu erzielen. Die tiefe Modellfusion bei groß angelegten Deep-Learning-Modellen (wie LLM und Basismodellen) steht vor einigen Herausforderungen, darunter hohe Rechenkosten, hochdimensionaler Parameterraum, Interferenzen zwischen verschiedenen heterogenen Modellen usw. Dieser Artikel unterteilt bestehende Methoden zur Tiefenmodellfusion in vier Kategorien: (1) „Musterverbindung“, die Lösungen im Gewichtsraum über einen verlustreduzierenden Pfad verbindet, um eine bessere anfängliche Modellfusion zu erzielen

Oben geschrieben & Nach persönlichem Verständnis des Autors ist die bildbasierte 3D-Rekonstruktion eine anspruchsvolle Aufgabe, bei der aus einer Reihe von Eingabebildern auf die 3D-Form eines Objekts oder einer Szene geschlossen werden muss. Lernbasierte Methoden haben wegen ihrer Fähigkeit, 3D-Formen direkt abzuschätzen, Aufmerksamkeit erregt. Dieser Übersichtsartikel konzentriert sich auf modernste 3D-Rekonstruktionstechniken, einschließlich der Generierung neuartiger, unsichtbarer Ansichten. Es wird ein Überblick über die jüngsten Entwicklungen bei Gaußschen Splash-Methoden gegeben, einschließlich Eingabetypen, Modellstrukturen, Ausgabedarstellungen und Trainingsstrategien. Auch ungelöste Herausforderungen und zukünftige Ausrichtungen werden besprochen. Angesichts der rasanten Fortschritte auf diesem Gebiet und der zahlreichen Möglichkeiten zur Verbesserung der 3D-Rekonstruktionsmethoden scheint eine gründliche Untersuchung des Algorithmus von entscheidender Bedeutung zu sein. Daher bietet diese Studie einen umfassenden Überblick über die jüngsten Fortschritte in der Gaußschen Streuung. (Wischen Sie mit dem Daumen nach oben

Das von OpenAI veröffentlichte GPT-4o-Modell ist zweifellos ein großer Durchbruch, insbesondere in Bezug auf seine Fähigkeit, mehrere Eingabemedien (Text, Audio, Bilder) zu verarbeiten und entsprechende Ausgaben zu generieren. Diese Fähigkeit macht die Mensch-Computer-Interaktion natürlicher und intuitiver und verbessert die Praktikabilität und Benutzerfreundlichkeit von KI erheblich. Zu den wichtigsten Highlights von GPT-4o gehören: hohe Skalierbarkeit, Multimedia-Ein- und -Ausgabe, weitere Verbesserungen der Fähigkeiten zum Verstehen natürlicher Sprache usw. 1. Medienübergreifende Eingabe/Ausgabe: GPT-4o+ kann jede beliebige Kombination aus Text, Audio und Bildern als Eingabe akzeptieren und direkt eine Ausgabe aus diesen Medien generieren. Dadurch wird die Beschränkung herkömmlicher KI-Modelle aufgehoben, die nur einen einzigen Eingabetyp verarbeiten, wodurch die Mensch-Computer-Interaktion flexibler und vielfältiger wird. Diese Innovation unterstützt intelligente Assistenten

Kombination von Golang und Front-End-Technologie: Um zu untersuchen, welche Rolle Golang im Front-End-Bereich spielt, sind spezifische Codebeispiele erforderlich. Mit der rasanten Entwicklung des Internets und mobiler Anwendungen ist die Front-End-Technologie immer wichtiger geworden. Auch in diesem Bereich kann Golang als leistungsstarke Back-End-Programmiersprache eine wichtige Rolle spielen. In diesem Artikel wird untersucht, wie Golang mit Front-End-Technologie kombiniert wird, und sein Potenzial im Front-End-Bereich anhand spezifischer Codebeispiele demonstriert. Die Rolle von Golang im Front-End-Bereich ist effizient, prägnant und leicht zu erlernen
