Maschinelles Lernen – Erste Schritte
Maschinelles Lernen ist ein Zweig der künstlichen Intelligenz. Die Forschung zur künstlichen Intelligenz folgt einem natürlichen und klaren Weg von der Konzentration auf „Argumentation“ über die Konzentration auf „Wissen“ bis hin zum „Lernen“. Offensichtlich ist maschinelles Lernen eine Möglichkeit, künstliche Intelligenz zu realisieren, das heißt, maschinelles Lernen als Mittel zur Lösung von Problemen in der künstlichen Intelligenz zu nutzen. In den letzten 30 Jahren hat sich maschinelles Lernen zu einem interdisziplinären Fach mit mehreren Bereichen entwickelt, das Wahrscheinlichkeitstheorie, Statistik, Approximationstheorie, Konvexanalyse, rechnerische Komplexitätstheorie und andere Disziplinen umfasst. Die Theorie des maschinellen Lernens umfasst hauptsächlich den Entwurf und die Analyse von Algorithmen, die es Computern ermöglichen, automatisch zu „lernen“. Algorithmen für maschinelles Lernen sind eine Art von Algorithmen, die Daten automatisch analysieren und Muster daraus ermitteln und diese Muster verwenden, um unbekannte Daten vorherzusagen. Da Lernalgorithmen einen großen Teil der statistischen Theorie beinhalten, ist maschinelles Lernen besonders eng mit der Inferenzstatistik verbunden, die auch als „statistische Lerntheorie“ bekannt ist. In Bezug auf das Algorithmusdesign konzentriert sich die Theorie des maschinellen Lernens auf erreichbare und effektive Lernalgorithmen. Viele Inferenzprobleme sind ohne ein Programm schwer zu lösen, daher besteht ein Teil der maschinellen Lernforschung darin, handhabbare Näherungsalgorithmen zu entwickeln. Maschinelles Lernen wird häufig in den Bereichen Data Mining, Computer Vision, Verarbeitung natürlicher Sprache, biometrische Identifizierung, Suchmaschinen, medizinische Diagnose, Erkennung von Kreditkartenbetrug, Wertpapiermarktanalyse, DNA-Sequenzsequenzierung, Sprach- und Handschrifterkennung, strategische Spiele und Roboter eingesetzt , usw. .
DefinitionMaschinelles Lernen ist eine Wissenschaft der künstlichen Intelligenz. Das Hauptforschungsobjekt in diesem Bereich ist künstliche Intelligenz, insbesondere die Frage, wie die Leistung bestimmter Algorithmen beim empirischen Lernen verbessert werden kann.
- Maschinelles Lernen ist das Studium von Computeralgorithmen, die sich durch Erfahrung automatisch verbessern können.
- Maschinelles Lernen nutzt Daten oder Erfahrungen aus der Vergangenheit, um die Leistungsstandards von Computerprogrammen zu optimieren.
- Eine häufig zitierte englische Definition lautet: Ein Computerprogramm soll aus der Erfahrung E in Bezug auf eine Aufgabenklasse T und ein Leistungsmaß P lernen, wenn sich seine Leistung bei Aufgaben in T, gemessen durch P, mit der Erfahrung E verbessert.
Überwachtes Lernen lernt eine Funktion aus einem bestimmten Trainingsdatensatz. Wenn neue Daten eintreffen, kann das Ergebnis basierend auf dieser Funktion vorhergesagt werden. Die Trainingssatzanforderung des überwachten Lernens besteht darin, Eingabe und Ausgabe einzubeziehen, die auch als Merkmale und Ziele bezeichnet werden können. Die Objekte im Trainingssatz werden von Menschen beschriftet. Zu den gängigen Algorithmen für überwachtes Lernen gehören Regressionsanalyse und statistische Klassifizierung.
- Der Unterschied zwischen überwachtem Lernen und unüberwachtem Lernen besteht darin, ob die Trainingsziele von Menschen festgelegt werden. Sie alle verfügen über Trainingssätze und beide über Eingabe und Ausgabe
Im Vergleich zum überwachten Lernen hat unüberwachtes Lernen keine vom Menschen gekennzeichneten Ergebnisse im Trainingssatz. Ein gängiger unbeaufsichtigter Lernalgorithmus ist Clustering.
- Halbüberwachtes Lernen liegt zwischen überwachtem Lernen und unüberwachtem Lernen.
- Reinforcement Learning lernt, wie man durch Beobachtung Aktionen ausführt. Jede Aktion hat Auswirkungen auf die Umgebung, und die Lernsubjekte fällen ihre Urteile auf der Grundlage der Rückmeldungen, die sie aus der Umgebung beobachten.
- Bishop, C. M. (2006). „Mustererkennung und maschinelles Lernen“, Springer
- Richard O. Duda, Peter E. Hart, David G. Stork (2001), New York: Wiley MacKay, D. J. C. (2003). „Information Theory, Reasoning and Learning Algorithms“, Cambridge University Press
- Mitchel.l, T. (1997). „Machine Learning“, McGraw Hill ISBN 0-07-042807-7
- Sholom Weiss, Casimir Kulikowski (1991). Computer Systems That Learn
- , Morgan Kaufmann
Das obige ist der detaillierte Inhalt vonMaschinelles Lernen – Erste Schritte. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Ursachen und Lösungen für Fehler Bei der Verwendung von PECL zur Installation von Erweiterungen in der Docker -Umgebung, wenn die Docker -Umgebung verwendet wird, begegnen wir häufig auf einige Kopfschmerzen ...

Viele Website -Entwickler stehen vor dem Problem der Integration von Node.js oder Python Services unter der Lampenarchitektur: Die vorhandene Lampe (Linux Apache MySQL PHP) Architekturwebsite benötigt ...

Verwenden Sie Python im Linux -Terminal ...

Konfigurieren Sie die Timing -Timing -Timing -Timing -Timing auf der MacOS -Plattform, wenn Sie die Timing -Timing -Timing -Timing von APScheduler als Service konfigurieren möchten, ähnlich wie bei NGIN ...

Multithreading in der Sprache kann die Programmeffizienz erheblich verbessern. Es gibt vier Hauptmethoden, um Multithreading in C -Sprache zu implementieren: Erstellen Sie unabhängige Prozesse: Erstellen Sie mehrere unabhängig laufende Prozesse. Jeder Prozess hat seinen eigenen Speicherplatz. Pseudo-MultitHhreading: Erstellen Sie mehrere Ausführungsströme in einem Prozess, der denselben Speicherplatz freigibt und abwechselnd ausführt. Multi-Thread-Bibliothek: Verwenden Sie Multi-Thread-Bibliotheken wie PThreads, um Threads zu erstellen und zu verwalten, wodurch reichhaltige Funktionen der Thread-Betriebsfunktionen bereitgestellt werden. Coroutine: Eine leichte Multi-Thread-Implementierung, die Aufgaben in kleine Unteraufgaben unterteilt und sie wiederum ausführt.

In Bezug auf das Problem der Entfernung des Python -Dolmetschers, das mit Linux -Systemen ausgestattet ist, werden viele Linux -Verteilungen den Python -Dolmetscher bei der Installation vorinstallieren, und verwendet den Paketmanager nicht ...

Um eine Web.xml -Datei zu öffnen, können Sie die folgenden Methoden verwenden: Verwenden Sie einen Texteditor (z.
