Inhaltsverzeichnis
Übersicht über das HIMap-Framework
Vergleich der experimentellen Ergebnisse
Heim Technologie-Peripheriegeräte KI Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Mar 19, 2024 pm 03:00 PM
框架 地图

Die vektorisierte hochauflösende (HD) Kartenerstellung erfordert die Vorhersage der Kategorien und Punktkoordinaten von Kartenelementen (z. B. Straßengrenzen, Fahrbahntrenner, Zebrastreifen usw.). Moderne Methoden basieren hauptsächlich auf dem Repräsentationslernen auf Punktebene zur Regression präziser Punktkoordinaten. Diese Pipeline weist jedoch Einschränkungen beim Abrufen von Informationen auf Elementebene und beim Behandeln von Fehlern auf Elementebene auf, z. B. falsche Elementformen oder Verschränkungen zwischen Elementen. Um die oben genannten Probleme zu lösen, schlägt dieses Papier ein einfaches und effektives Hybrid-Framework namens HIMap vor, um Informationen auf Punkt- und Elementebene vollständig zu lernen und mit ihnen zu interagieren.

Konkret wird eine Hybriddarstellung namens HIQuery eingeführt, um alle Kartenelemente darzustellen, und ein Punktelement-Interaktor wird vorgeschlagen, um die Hybridinformationen von Elementen, wie Punktpositionen und Elementformen, interaktiv zu extrahieren und in HIQuery zu codieren. Darüber hinaus werden auch Punktelement-Konsistenzbeschränkungen vorgeschlagen, um die Konsistenz zwischen Informationen auf Punktebene und auf Elementebene zu verbessern. Abschließend können die ausgegebenen Punktelemente der integrierten HIQuery direkt in die Klasse, Punktkoordinaten und Maske des Kartenelements umgewandelt werden. Umfangreiche Experimente werden mit nuScenes- und Argoverse2-Datensätzen durchgeführt und zeigen durchweg bessere Ergebnisse als frühere Methoden. Es ist erwähnenswert, dass die Methode 77,8 mAP im nuScenes-Datensatz erreicht, was um mindestens 8,3 mAP deutlich besser ist als beim vorherigen SOTA!

Papiername: HIMap: HybrId Representation Learning for End-to-end Vectorized HD Map Construction

Papierlink: https://arxiv.org/pdf/2403.08639.pdf

HIMap stellt erstmals einen Hybrid namens HIQuery Represents all Map vor Elemente in der Karte. Dabei handelt es sich um eine Reihe lernbarer Parameter, die durch Interaktion mit BEV-Funktionen iterativ aktualisiert und verfeinert werden können. Anschließend wird ein mehrschichtiger Hybriddecoder entwickelt, um die Hybridinformationen von Kartenelementen (z. B. Punktposition, Elementform) in HIQuery zu codieren und eine Punktelementinteraktion durchzuführen, siehe Abbildung 2. Jede Schicht des Hybriddecoders umfasst Punktelementinteraktoren, Selbstaufmerksamkeit und FFN. Innerhalb des Punkt-Element-Interaktors ist ein gegenseitiger Interaktionsmechanismus implementiert, um den Austausch von Informationen auf Punkt- und Elementebene zu realisieren und die Lernverzerrung von Informationen auf einer Ebene zu vermeiden. Schließlich können die Ausgabepunktelemente von integrierter HIQuery direkt in die Punktkoordinaten, die Klasse und die Maske des Elements konvertiert werden. Darüber hinaus werden Punktelement-Konsistenzbeschränkungen vorgeschlagen, um die Konsistenz zwischen Informationen auf Punktebene und auf Elementebene zu verbessern.

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Übersicht über das HIMap-Framework

Der Gesamtprozess von HIMap ist in Abbildung 3(a) dargestellt. HIMap ist mit einer Vielzahl luftgestützter Sensordaten kompatibel, beispielsweise RGB-Bildern von Multi-View-Kameras, Punktwolken von Lidar oder multimodalen Daten. Hier nehmen wir RGB-Bilder mit mehreren Ansichten als Beispiel, um die Funktionsweise von HIMap zu erklären.

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

BEV Feature Extractor ist ein Tool zum Extrahieren von BEV-Features aus RGB-Bildern mit mehreren Ansichten. Sein Kern besteht darin, den Backbone-Teil von 2D-Features mit mehreren Maßstäben aus jeder Perspektive zu extrahieren, den FPN-Teil von Features mit einem Maßstab durch Fusion und Verfeinerung von Features mit mehreren Maßstäben zu erhalten und das Modul zur Konvertierung von 2D-zu-BEV-Features zu verwenden, um 2D-Features in BEV abzubilden Merkmale. . Dieser Prozess trägt dazu bei, Bildinformationen in BEV-Merkmale umzuwandeln, die sich besser für die Verarbeitung und Analyse eignen, und verbessert so die Benutzerfreundlichkeit und Genauigkeit der Merkmale. Durch diese Methode können wir die Informationen in Multi-View-Bildern besser verstehen und nutzen, was eine stärkere Unterstützung für die nachfolgende Datenverarbeitung und Entscheidungsfindung bietet.

HIQuery: Um die Informationen von Kartenelementen auf Punkt- und Elementebene vollständig zu lernen, wird HIQuery eingeführt, um alle Elemente in der Karte darzustellen!

Hybrid-Decoder: Der Hybrid-Decoder erzeugt integrierte HIQuery durch iterative Interaktion von HIQuery Qh mit BEV-Funktionen X.

Das Ziel des Punktelement-Interaktors besteht darin, interaktiv Informationen von Kartenelementen auf Punkt- und Elementebene zu extrahieren und in HIQuery zu kodieren. Die Motivation für das Zusammenspiel der beiden Informationsebenen liegt in ihrer Komplementarität. Informationen auf Punktebene enthalten lokales Standortwissen, während Informationen auf Elementebene globales Form- und Semantikwissen bereitstellen. Diese Interaktion ermöglicht somit eine gegenseitige Verfeinerung lokaler und globaler Informationen von Kartenelementen.

In Anbetracht des ursprünglichen Unterschieds zwischen der Darstellung auf Punktebene und der Darstellung auf Elementebene, die sich jeweils auf lokale Informationen und globale Informationen konzentrieren, kann sich das Lernen von Darstellungen auf zwei Ebenen auch gegenseitig beeinträchtigen. Dies erhöht die Schwierigkeit der Informationsinteraktion und verringert die Wirksamkeit der Informationsinteraktion. Daher werden Punktelement-Konsistenzbeschränkungen eingeführt, um die Konsistenz zwischen den einzelnen Punktebenen- und Elementebeneninformationen zu verbessern, und die Unterscheidbarkeit von Elementen kann ebenfalls verbessert werden!

Vergleich der experimentellen Ergebnisse

Der Artikel führte Experimente mit dem NuScenes-Datensatz und dem Argoverse2-Datensatz durch!

Vergleich des SOTA-Modells auf dem nuScenes-Wertesatz:

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Vergleich des SOTA-Modells auf dem Argoverse2-Wertesatz:

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Vergleich mit dem SOTA-Modell unter Nuscenes Validierungssatz Multimodaldaten:

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Weitere Ablationsexperimente:

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Besser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion

Das obige ist der detaillierte Inhalt vonBesser als alle Methoden! HIMap: Durchgängige vektorisierte HD-Kartenkonstruktion. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

So bewerten Sie die Kosteneffizienz der kommerziellen Unterstützung für Java-Frameworks So bewerten Sie die Kosteneffizienz der kommerziellen Unterstützung für Java-Frameworks Jun 05, 2024 pm 05:25 PM

Die Bewertung des Kosten-/Leistungsverhältnisses des kommerziellen Supports für ein Java-Framework umfasst die folgenden Schritte: Bestimmen Sie das erforderliche Maß an Sicherheit und Service-Level-Agreement-Garantien (SLA). Die Erfahrung und das Fachwissen des Forschungsunterstützungsteams. Erwägen Sie zusätzliche Services wie Upgrades, Fehlerbehebung und Leistungsoptimierung. Wägen Sie die Kosten für die Geschäftsunterstützung gegen Risikominderung und Effizienzsteigerung ab.

So verwenden Sie Übersichtsanweisungen auf Google Maps So verwenden Sie Übersichtsanweisungen auf Google Maps Jun 13, 2024 pm 09:40 PM

Ein Jahr nach seiner Einführung hat Google Maps eine neue Funktion eingeführt. Sobald Sie auf der Karte eine Route zu Ihrem Ziel festgelegt haben, wird Ihre Reiseroute zusammengefasst. Sobald Ihre Reise beginnt, können Sie die Routenführung auf dem Sperrbildschirm Ihres Telefons „durchsuchen“. Sie können Google Maps verwenden, um Ihre voraussichtliche Ankunftszeit und Route anzuzeigen. Während Ihrer Reise können Sie Navigationsinformationen auf Ihrem Sperrbildschirm anzeigen. Wenn Sie Ihr Telefon entsperren, können Sie Navigationsinformationen anzeigen, ohne auf Google Maps zugreifen zu müssen. Wenn Sie Ihr Telefon entsperren, können Sie Navigationsinformationen anzeigen, ohne auf Google Maps zugreifen zu müssen. Durch Entsperren Ihres Telefons können Sie Navigationsinformationen anzeigen, ohne auf Google Maps zuzugreifen. Durch Entsperren Ihres Telefons können Sie Navigationsinformationen anzeigen, ohne auf Google Maps zuzugreifen. Sie können Navigationsinformationen anzeigen, ohne auf Google Maps zuzugreifen.

Wie wirken sich die Lightweight-Optionen von PHP-Frameworks auf die Anwendungsleistung aus? Wie wirken sich die Lightweight-Optionen von PHP-Frameworks auf die Anwendungsleistung aus? Jun 06, 2024 am 10:53 AM

Das leichte PHP-Framework verbessert die Anwendungsleistung durch geringe Größe und geringen Ressourcenverbrauch. Zu seinen Merkmalen gehören: geringe Größe, schneller Start, geringer Speicherverbrauch, verbesserte Reaktionsgeschwindigkeit und Durchsatz sowie reduzierter Ressourcenverbrauch. Praktischer Fall: SlimFramework erstellt eine REST-API, nur 500 KB, hohe Reaktionsfähigkeit und hoher Durchsatz

Best Practices für die Dokumentation des Golang-Frameworks Best Practices für die Dokumentation des Golang-Frameworks Jun 04, 2024 pm 05:00 PM

Das Verfassen einer klaren und umfassenden Dokumentation ist für das Golang-Framework von entscheidender Bedeutung. Zu den Best Practices gehört die Befolgung eines etablierten Dokumentationsstils, beispielsweise des Go Coding Style Guide von Google. Verwenden Sie eine klare Organisationsstruktur, einschließlich Überschriften, Unterüberschriften und Listen, und sorgen Sie für eine Navigation. Bietet umfassende und genaue Informationen, einschließlich Leitfäden für den Einstieg, API-Referenzen und Konzepte. Verwenden Sie Codebeispiele, um Konzepte und Verwendung zu veranschaulichen. Halten Sie die Dokumentation auf dem neuesten Stand, verfolgen Sie Änderungen und dokumentieren Sie neue Funktionen. Stellen Sie Support und Community-Ressourcen wie GitHub-Probleme und Foren bereit. Erstellen Sie praktische Beispiele, beispielsweise eine API-Dokumentation.

So wählen Sie das beste Golang-Framework für verschiedene Anwendungsszenarien aus So wählen Sie das beste Golang-Framework für verschiedene Anwendungsszenarien aus Jun 05, 2024 pm 04:05 PM

Wählen Sie das beste Go-Framework basierend auf Anwendungsszenarien aus: Berücksichtigen Sie Anwendungstyp, Sprachfunktionen, Leistungsanforderungen und Ökosystem. Gängige Go-Frameworks: Gin (Webanwendung), Echo (Webdienst), Fiber (hoher Durchsatz), gorm (ORM), fasthttp (Geschwindigkeit). Praktischer Fall: Erstellen einer REST-API (Fiber) und Interaktion mit der Datenbank (gorm). Wählen Sie ein Framework: Wählen Sie fasthttp für die Schlüsselleistung, Gin/Echo für flexible Webanwendungen und gorm für die Datenbankinteraktion.

Wie ist die Lernkurve von PHP-Frameworks im Vergleich zu anderen Sprach-Frameworks? Wie ist die Lernkurve von PHP-Frameworks im Vergleich zu anderen Sprach-Frameworks? Jun 06, 2024 pm 12:41 PM

Die Lernkurve eines PHP-Frameworks hängt von Sprachkenntnissen, Framework-Komplexität, Dokumentationsqualität und Community-Unterstützung ab. Die Lernkurve von PHP-Frameworks ist im Vergleich zu Python-Frameworks höher und im Vergleich zu Ruby-Frameworks niedriger. Im Vergleich zu Java-Frameworks haben PHP-Frameworks eine moderate Lernkurve, aber eine kürzere Einstiegszeit.

Leistungsvergleich von Java-Frameworks Leistungsvergleich von Java-Frameworks Jun 04, 2024 pm 03:56 PM

Laut Benchmarks sind Quarkus (schneller Start, geringer Speicher) oder Micronaut (TechEmpower ausgezeichnet) für kleine, leistungsstarke Anwendungen die ideale Wahl. SpringBoot eignet sich für große Full-Stack-Anwendungen, weist jedoch etwas langsamere Startzeiten und Speichernutzung auf.

Detaillierte praktische Erklärung der Golang-Framework-Entwicklung: Fragen und Antworten Detaillierte praktische Erklärung der Golang-Framework-Entwicklung: Fragen und Antworten Jun 06, 2024 am 10:57 AM

Bei der Go-Framework-Entwicklung treten häufige Herausforderungen und deren Lösungen auf: Fehlerbehandlung: Verwenden Sie das Fehlerpaket für die Verwaltung und Middleware zur zentralen Fehlerbehandlung. Authentifizierung und Autorisierung: Integrieren Sie Bibliotheken von Drittanbietern und erstellen Sie benutzerdefinierte Middleware zur Überprüfung von Anmeldeinformationen. Parallelitätsverarbeitung: Verwenden Sie Goroutinen, Mutexe und Kanäle, um den Ressourcenzugriff zu steuern. Unit-Tests: Verwenden Sie Gotest-Pakete, Mocks und Stubs zur Isolierung sowie Code-Coverage-Tools, um die Angemessenheit sicherzustellen. Bereitstellung und Überwachung: Verwenden Sie Docker-Container, um Bereitstellungen zu verpacken, Datensicherungen einzurichten und Leistung und Fehler mit Protokollierungs- und Überwachungstools zu verfolgen.

See all articles