MySQL企业版数据库_MySQL
MySQL是开源方面的领军企业,同时也是全球成长最快的开源数据库开发商之一。作为全球最流行的开源数据库软件,MySQL企业版是公司的旗舰产品,包括经过产品测试的软件、主动监测工具和金牌支持服务。许多全球最大、增长最快的企业和机构,包括行业领导者如雅虎、阿尔卡特-朗讯、谷歌、诺基亚、YouTube和Booking.com均采用MySQL产品,省时、省钱地创建大量网站、关键业务系统和打包软件。MySQL的开源数据库广泛部署于所有主要的操作系统,硬件用户、所涉地区、应用行业、应用类型极其广泛。MySQL的高性能开源数据库软件已经被下载和发行超过1亿套,并且正以每天下载5万套的数量增长。
MySQL开源数据库是LAMP架构(由Linux、Apache、MySQL和PHP/Perl组成的、通常被看作是互联网基础)中的“M”。来自MySQL的数据库,还有OpenSolaris和GlassFish,加上Sun的Java平台和NetBeans社区,将为转移应用到Web的广大客户开创一个强大的Web应用平台。
MySQL Enterprise Server软件是最可靠、最安全、更新版本的MySQL企业级服务器数据库,它能够高性价比地提供电子商务、联机事务处理(OLTP)、千兆规模的数据仓库应用等。它是一个安全的事务处理、适应ACID的数据库,能提供完整的提交、反转、崩溃恢复和行级锁定功能。MySQL数据库因其易用性、可扩展性和高性能等特点,成为全球最流行的开源数据库。
MySQL Enterprise Server 5.0提供了新的企业级产品功能,其中包括:
ACID事务处理:用以建立可靠安全的关键应用
存储过程:可以提高开发人员的工作效率
触发器:使用户能在数据库层面完成复杂的商业逻辑
视图: 确保敏感数据不被窃取
信息计划:为查询元数据提供快速的途径
分布式处理:通过它可以支持跨多个数据库的复杂事务处理
可插拔存储引擎架构:为数据库设计实施提供极大的灵活性
Archive存储引擎:提供了历史数据和审计数据的管理平台
Federated存储引擎:可以将多个不同服务器上的数据建立到一个统一的逻辑数据库
MySQL还提供了全套数据库驱动和绘图工具,用以帮助开发者和数据库管理员建立和管理其MySQL应用,如下:
(1)MySQL驱动
MySQL Native C Library
MySQL Drivers for ODBC, JDBC, .NET
Community Drivers for PHP, Perl, Python, Ruby, etc
MySQL Connector/MXJ for deployment as a JMX MBean
(2)MySQL图形工具
MySQL Workbench
MySQL Query Browser
MySQL Administrator
MySQL Migration Toolkit

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Bei der Bildanmerkung handelt es sich um das Verknüpfen von Beschriftungen oder beschreibenden Informationen mit Bildern, um dem Bildinhalt eine tiefere Bedeutung und Erklärung zu verleihen. Dieser Prozess ist entscheidend für maschinelles Lernen, das dabei hilft, Sehmodelle zu trainieren, um einzelne Elemente in Bildern genauer zu identifizieren. Durch das Hinzufügen von Anmerkungen zu Bildern kann der Computer die Semantik und den Kontext hinter den Bildern verstehen und so den Bildinhalt besser verstehen und analysieren. Die Bildanmerkung hat ein breites Anwendungsspektrum und deckt viele Bereiche ab, z. B. Computer Vision, Verarbeitung natürlicher Sprache und Diagramm-Vision-Modelle. Sie verfügt über ein breites Anwendungsspektrum, z. B. zur Unterstützung von Fahrzeugen bei der Identifizierung von Hindernissen auf der Straße und bei der Erkennung und Diagnose von Krankheiten durch medizinische Bilderkennung. In diesem Artikel werden hauptsächlich einige bessere Open-Source- und kostenlose Bildanmerkungstools empfohlen. 1.Makesens

Bei der Textanmerkung handelt es sich um die Arbeit mit entsprechenden Beschriftungen oder Tags für bestimmte Inhalte im Text. Sein Hauptzweck besteht darin, zusätzliche Informationen zum Text für eine tiefere Analyse und Verarbeitung bereitzustellen, insbesondere im Bereich der künstlichen Intelligenz. Textanmerkungen sind für überwachte maschinelle Lernaufgaben in Anwendungen der künstlichen Intelligenz von entscheidender Bedeutung. Es wird zum Trainieren von KI-Modellen verwendet, um Textinformationen in natürlicher Sprache genauer zu verstehen und die Leistung von Aufgaben wie Textklassifizierung, Stimmungsanalyse und Sprachübersetzung zu verbessern. Durch Textanmerkungen können wir KI-Modellen beibringen, Entitäten im Text zu erkennen, den Kontext zu verstehen und genaue Vorhersagen zu treffen, wenn neue ähnliche Daten auftauchen. In diesem Artikel werden hauptsächlich einige bessere Open-Source-Textanmerkungstools empfohlen. 1.LabelStudiohttps://github.com/Hu

Die Technologie zur Gesichtserkennung und -erkennung ist bereits eine relativ ausgereifte und weit verbreitete Technologie. Derzeit ist JS die am weitesten verbreitete Internetanwendungssprache. Die Implementierung der Gesichtserkennung und -erkennung im Web-Frontend hat im Vergleich zur Back-End-Gesichtserkennung Vor- und Nachteile. Zu den Vorteilen gehören die Reduzierung der Netzwerkinteraktion und die Echtzeiterkennung, was die Wartezeit des Benutzers erheblich verkürzt und das Benutzererlebnis verbessert. Die Nachteile sind: Es ist durch die Größe des Modells begrenzt und auch die Genauigkeit ist begrenzt. Wie implementiert man mit js die Gesichtserkennung im Web? Um die Gesichtserkennung im Web zu implementieren, müssen Sie mit verwandten Programmiersprachen und -technologien wie JavaScript, HTML, CSS, WebRTC usw. vertraut sein. Gleichzeitig müssen Sie auch relevante Technologien für Computer Vision und künstliche Intelligenz beherrschen. Dies ist aufgrund des Designs der Webseite erwähnenswert

Lassen Sie mich Ihnen das neueste AIGC-Open-Source-Projekt vorstellen – AnimagineXL3.1. Dieses Projekt ist die neueste Version des Text-zu-Bild-Modells mit Anime-Thema und zielt darauf ab, Benutzern ein optimiertes und leistungsfähigeres Erlebnis bei der Generierung von Anime-Bildern zu bieten. Bei AnimagineXL3.1 konzentrierte sich das Entwicklungsteam auf die Optimierung mehrerer Schlüsselaspekte, um sicherzustellen, dass das Modell neue Höhen in Bezug auf Leistung und Funktionalität erreicht. Zunächst erweiterten sie die Trainingsdaten, um nicht nur Spielcharakterdaten aus früheren Versionen, sondern auch Daten aus vielen anderen bekannten Anime-Serien in das Trainingsset aufzunehmen. Dieser Schritt erweitert die Wissensbasis des Modells und ermöglicht ihm ein umfassenderes Verständnis verschiedener Anime-Stile und Charaktere. AnimagineXL3.1 führt eine neue Reihe spezieller Tags und Ästhetiken ein

Neues SOTA für multimodale Dokumentverständnisfunktionen! Das Alibaba mPLUG-Team hat die neueste Open-Source-Arbeit mPLUG-DocOwl1.5 veröffentlicht, die eine Reihe von Lösungen zur Bewältigung der vier großen Herausforderungen der hochauflösenden Bildtexterkennung, des allgemeinen Verständnisses der Dokumentstruktur, der Befolgung von Anweisungen und der Einführung externen Wissens vorschlägt. Schauen wir uns ohne weitere Umschweife zunächst die Auswirkungen an. Ein-Klick-Erkennung und Konvertierung von Diagrammen mit komplexen Strukturen in das Markdown-Format: Es stehen Diagramme verschiedener Stile zur Verfügung: Auch eine detailliertere Texterkennung und -positionierung ist einfach zu handhaben: Auch ausführliche Erläuterungen zum Dokumentverständnis können gegeben werden: Sie wissen schon, „Document Understanding“. " ist derzeit ein wichtiges Szenario für die Implementierung großer Sprachmodelle. Es gibt viele Produkte auf dem Markt, die das Lesen von Dokumenten unterstützen. Einige von ihnen verwenden hauptsächlich OCR-Systeme zur Texterkennung und arbeiten mit LLM zur Textverarbeitung zusammen.

Papieradresse: https://arxiv.org/abs/2307.09283 Codeadresse: https://github.com/THU-MIG/RepViTRepViT funktioniert gut in der mobilen ViT-Architektur und zeigt erhebliche Vorteile. Als nächstes untersuchen wir die Beiträge dieser Studie. In dem Artikel wird erwähnt, dass Lightweight-ViTs bei visuellen Aufgaben im Allgemeinen eine bessere Leistung erbringen als Lightweight-CNNs, hauptsächlich aufgrund ihres Multi-Head-Selbstaufmerksamkeitsmoduls (MSHA), das es dem Modell ermöglicht, globale Darstellungen zu lernen. Allerdings wurden die architektonischen Unterschiede zwischen Lightweight-ViTs und Lightweight-CNNs noch nicht vollständig untersucht. In dieser Studie integrierten die Autoren leichte ViTs in die effektiven

FP8 und die geringere Gleitkomma-Quantifizierungsgenauigkeit sind nicht länger das „Patent“ von H100! Lao Huang wollte, dass jeder INT8/INT4 nutzt, und das Microsoft DeepSpeed-Team begann, FP6 auf A100 ohne offizielle Unterstützung von NVIDIA auszuführen. Testergebnisse zeigen, dass die FP6-Quantisierung der neuen Methode TC-FPx auf A100 nahe an INT4 liegt oder gelegentlich schneller als diese ist und eine höhere Genauigkeit aufweist als letztere. Darüber hinaus gibt es eine durchgängige Unterstützung großer Modelle, die als Open-Source-Lösung bereitgestellt und in Deep-Learning-Inferenz-Frameworks wie DeepSpeed integriert wurde. Dieses Ergebnis wirkt sich auch unmittelbar auf die Beschleunigung großer Modelle aus – in diesem Rahmen ist der Durchsatz bei Verwendung einer einzelnen Karte zum Ausführen von Llama 2,65-mal höher als der von Doppelkarten. eins

Das neueste groß angelegte inländische Open-Source-MoE-Modell erfreute sich gleich nach seinem Debüt großer Beliebtheit. Die Leistung von DeepSeek-V2 erreicht GPT-4-Niveau, es ist jedoch Open Source, kostenlos für die kommerzielle Nutzung und der API-Preis beträgt nur ein Prozent von GPT-4-Turbo. Daher löste es sofort nach seiner Veröffentlichung viele Diskussionen aus. Den veröffentlichten Leistungsindikatoren zufolge übertreffen die umfassenden chinesischen Fähigkeiten von DeepSeekV2 die vieler Open-Source-Modelle. Gleichzeitig befinden sich auch Closed-Source-Modelle wie GPT-4Turbo und Wenkuai 4.0 auf der ersten Stufe. Die umfassenden Englischkenntnisse liegen ebenfalls auf der gleichen ersten Stufe wie LLaMA3-70B und übertreffen Mixtral8x22B, das ebenfalls ein MoE ist. Es zeigt auch gute Leistungen in den Bereichen Wissen, Mathematik, logisches Denken, Programmieren usw. Und unterstützt 128K-Kontext. Stellen Sie sich das vor
