


Genauigkeit >98 %, GPT basierend auf der Elektronendichte wird in der chemischen Forschung verwendet, veröffentlicht im Nature-Unterjournal
Herausgeber | Violet
Der chemische Raum synthetisierter Moleküle ist sehr breit. Eine effektive Erforschung dieses Feldes erfordert Vertrauen über rechnerische Screening-Technologien wie Deep Learning, um schnell eine Vielzahl interessanter Verbindungen zu entdecken
Die Umwandlung molekularer Strukturen in digitale Darstellungen und die Entwicklung entsprechender Algorithmen zur Generierung neuer molekularer Strukturen sind der Schlüssel zur chemischen Entdeckung
Kürzlich an der University of Glasgow, Großbritannien Das Forschungsteam schlug ein maschinelles Lernmodell zur Erzeugung von Wirt-Gast-Bindungen vor. Dieses Modell ist in der Lage, Daten im Simplified Molecular Linear Input Specification (SMILES)-Format mit einer Genauigkeit von bis zu 98 % zu lesen eine Genauigkeit von 98 %. Umfassende Beschreibung von Molekülen im zweidimensionalen Raum
Erzeugen Sie eine dreidimensionale Darstellung der Elektronendichte und des elektrostatischen Potenzials des Wirt-Gast-Systems und optimieren Sie dann die Erzeugung des Gasts Durch den Gradientenabstieg wurde schließlich eine effiziente Darstellung und Transformation von Gaststrukturen mit Cucurbituril und metallorganischen Käfigen erreicht, was zur Entdeckung von 9 führte zuvor validierte CB[6]-Gäste und 7 nicht gemeldete Objekte und entdeckte 4 nicht gemeldete
98 % GPT basierend auf der Elektronendichte für die chemische Forschung, veröffentlicht im Nature-Unterjournal „ />Objects.98 %, GPT basierend auf der Elektronendichte wird in der chemischen Forschung verwendet, veröffentlicht in der Unterzeitschrift „Nature“ />Der Arbeitsablauf umfasst die folgenden Schritte:
generiert wurden, wurde ein In-vitro-Workflow etabliert, um die vielversprechendsten Kandidaten experimentell zu testen.
wurden von Chemieexperten für experimentelle Tests klassifiziert. Vielversprechende Gäste zum Testen werden auf der Grundlage ihrer strukturellen Ähnlichkeit mit bekannten Gästen von CB[6] oder , der Intuition professioneller Chemiker und ihrer kommerziellen Verfügbarkeit ausgewählt.
(2) Verwenden Sie die direkte zu bestimmen. Es ist erwähnenswert, dass der Gast erzeugt wurde Der Computer Mischungen, die Moleküle enthalten, von denen bisher bekannt war, dass sie an Wirte binden (oder eng mit ihnen verwandt sind), und Moleküle, die sich der Intuition von Experten entziehen -Gastsysteme: Cucurbituril (CB[n]) und metallorganische Käfige sind zu literaturverifizierten und nicht gemeldeten Objekten geworden. Der Algorithmus generierte außerdem 9 bisher bekannte Objekte für CB[6]. und die Affinität von CB[6] für diese neuen Gäste wurde durch direkte
In allen 7 Fällen wird eine Reihe von Signalen für das Wirt-Gast-System beobachtet, was darauf hinweist, dass Das System erfährt einen schnellen Austausch auf der NMR-Zeitskala. Nach der Komplexierung verschiebt sich die aliphatische Kettenresonanz der Gastmoleküle nach oben, was darauf hinweist, dass sie im CB[6]-Hohlraum eingekapselt sind Forschung, veröffentlicht in „Nature Sub-Journal“ /> Die Assoziationskonstante mit CB[6] folgt dem zuvor festgestellten Trend und reicht von 13,5 M^− 1 bis 5.470 M^−1.
98 %, GPT basierend auf der Elektronendichte wird in der chemischen Forschung verwendet, veröffentlicht in der Unterzeitschrift „Nature“ />Abbildung: Optimierung von CB[6] und zuvor bekannten Objekten und optimierten Objekten von. (Quelle: Papier )
generiert der Optimierungsalgorithmus nur unbekannte Gastmoleküle, und die Bindungsstärke zwischen vier potenziellen nicht gemeldeten Gästen und [Pd214](BArF)4 wird in allen vier Fällen durch direkte größere Hohlräume haben und größere Gastmoleküle erfordern. In zukünftigen Studien werden Datensätze verwendet, die größere Moleküle enthalten, wie beispielsweise der GDB-17-Datensatz.
Danach: „Unser Ziel ist es, die Auswahl neuer Liganden in den Generierungsprozess einzubetten, Moleküle auf automatisierten Syntheseplattformen (wie Chemputer-Robotern) autonom zu synthetisieren, den Kreislauf zwischen Optimierung und Test zu schließen und einen cyber-physikalischen Abschluss zu schaffen.“ Schleifensystem.“
Das obige ist der detaillierte Inhalt vonGenauigkeit >98 %, GPT basierend auf der Elektronendichte wird in der chemischen Forschung verwendet, veröffentlicht im Nature-Unterjournal. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

In der modernen Fertigung ist die genaue Fehlererkennung nicht nur der Schlüssel zur Sicherstellung der Produktqualität, sondern auch der Kern für die Verbesserung der Produktionseffizienz. Allerdings mangelt es vorhandenen Datensätzen zur Fehlererkennung häufig an der Genauigkeit und dem semantischen Reichtum, die für praktische Anwendungen erforderlich sind, was dazu führt, dass Modelle bestimmte Fehlerkategorien oder -orte nicht identifizieren können. Um dieses Problem zu lösen, hat ein Spitzenforschungsteam bestehend aus der Hong Kong University of Science and Technology Guangzhou und Simou Technology innovativ den „DefectSpectrum“-Datensatz entwickelt, der eine detaillierte und semantisch reichhaltige groß angelegte Annotation von Industriedefekten ermöglicht. Wie in Tabelle 1 gezeigt, bietet der Datensatz „DefectSpectrum“ im Vergleich zu anderen Industriedatensätzen die meisten Fehleranmerkungen (5438 Fehlerproben) und die detaillierteste Fehlerklassifizierung (125 Fehlerkategorien).

Die offene LLM-Community ist eine Ära, in der hundert Blumen blühen und konkurrieren. Sie können Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 und viele andere sehen hervorragende Darsteller. Allerdings weisen offene Modelle im Vergleich zu den proprietären Großmodellen GPT-4-Turbo in vielen Bereichen noch erhebliche Lücken auf. Zusätzlich zu allgemeinen Modellen wurden einige offene Modelle entwickelt, die sich auf Schlüsselbereiche spezialisieren, wie etwa DeepSeek-Coder-V2 für Programmierung und Mathematik und InternVL für visuelle Sprachaufgaben.

Für KI ist die Mathematikolympiade kein Problem mehr. Am Donnerstag hat die künstliche Intelligenz von Google DeepMind eine Meisterleistung vollbracht: Sie nutzte KI, um meiner Meinung nach die eigentliche Frage der diesjährigen Internationalen Mathematikolympiade zu lösen, und war nur einen Schritt davon entfernt, die Goldmedaille zu gewinnen. Der IMO-Wettbewerb, der gerade letzte Woche zu Ende ging, hatte sechs Fragen zu Algebra, Kombinatorik, Geometrie und Zahlentheorie. Das von Google vorgeschlagene hybride KI-System beantwortete vier Fragen richtig und erzielte 28 Punkte und erreichte damit die Silbermedaillenstufe. Anfang dieses Monats hatte der UCLA-Professor Terence Tao gerade die KI-Mathematische Olympiade (AIMO Progress Award) mit einem Millionenpreis gefördert. Unerwarteterweise hatte sich das Niveau der KI-Problemlösung vor Juli auf dieses Niveau verbessert. Beantworten Sie die Fragen meiner Meinung nach gleichzeitig. Am schwierigsten ist es meiner Meinung nach, da sie die längste Geschichte, den größten Umfang und die negativsten Fragen haben

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

Herausgeber | ScienceAI Basierend auf begrenzten klinischen Daten wurden Hunderte medizinischer Algorithmen genehmigt. Wissenschaftler diskutieren darüber, wer die Werkzeuge testen soll und wie dies am besten geschieht. Devin Singh wurde Zeuge, wie ein pädiatrischer Patient in der Notaufnahme einen Herzstillstand erlitt, während er lange auf eine Behandlung wartete, was ihn dazu veranlasste, den Einsatz von KI zu erforschen, um Wartezeiten zu verkürzen. Mithilfe von Triage-Daten aus den Notaufnahmen von SickKids erstellten Singh und Kollegen eine Reihe von KI-Modellen, um mögliche Diagnosen zu stellen und Tests zu empfehlen. Eine Studie zeigte, dass diese Modelle die Zahl der Arztbesuche um 22,3 % verkürzen können und die Verarbeitung der Ergebnisse pro Patient, der einen medizinischen Test benötigt, um fast drei Stunden beschleunigt. Der Erfolg von Algorithmen der künstlichen Intelligenz in der Forschung bestätigt dies jedoch nur

Herausgeber |KX Bis heute sind die durch die Kristallographie ermittelten Strukturdetails und Präzision, von einfachen Metallen bis hin zu großen Membranproteinen, mit keiner anderen Methode zu erreichen. Die größte Herausforderung, das sogenannte Phasenproblem, bleibt jedoch die Gewinnung von Phaseninformationen aus experimentell bestimmten Amplituden. Forscher der Universität Kopenhagen in Dänemark haben eine Deep-Learning-Methode namens PhAI entwickelt, um Kristallphasenprobleme zu lösen. Ein Deep-Learning-Neuronales Netzwerk, das mithilfe von Millionen künstlicher Kristallstrukturen und den entsprechenden synthetischen Beugungsdaten trainiert wird, kann genaue Elektronendichtekarten erstellen. Die Studie zeigt, dass diese Deep-Learning-basierte Ab-initio-Strukturlösungsmethode das Phasenproblem mit einer Auflösung von nur 2 Angström lösen kann, was nur 10 bis 20 % der bei atomarer Auflösung verfügbaren Daten im Vergleich zur herkömmlichen Ab-initio-Berechnung entspricht

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Herausgeber |. Der Einsatz von Ziluo AI bei der Rationalisierung der Arzneimittelforschung nimmt explosionsartig zu. Durchsuchen Sie Milliarden von Kandidatenmolekülen nach solchen, die möglicherweise über Eigenschaften verfügen, die für die Entwicklung neuer Medikamente erforderlich sind. Es sind so viele Variablen zu berücksichtigen, von Materialpreisen bis hin zum Fehlerrisiko, dass es keine leichte Aufgabe ist, die Kosten für die Synthese der besten Kandidatenmoleküle abzuwägen, selbst wenn Wissenschaftler KI einsetzen. Hier entwickelten MIT-Forscher SPARROW, ein quantitatives Entscheidungsalgorithmus-Framework, um automatisch die besten molekularen Kandidaten zu identifizieren und so die Synthesekosten zu minimieren und gleichzeitig die Wahrscheinlichkeit zu maximieren, dass die Kandidaten die gewünschten Eigenschaften aufweisen. Der Algorithmus bestimmte auch die Materialien und experimentellen Schritte, die zur Synthese dieser Moleküle erforderlich sind. SPARROW berücksichtigt die Kosten für die gleichzeitige Synthese einer Charge von Molekülen, da häufig mehrere Kandidatenmoleküle verfügbar sind
