Inhaltsverzeichnis
0. Was bewirkt dieser Artikel?
1. Papierinformationen
2. Zusammenfassung
3. Effektdemonstration
4. Hauptbeiträge
5. Was ist das konkrete Prinzip?
Leser, die an weiteren experimentellen Ergebnissen und Artikeldetails interessiert sind, können den Originalartikel lesen
Heim Technologie-Peripheriegeräte KI Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung!

Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung!

Apr 03, 2024 pm 12:04 PM
数据 训练

0. Was bewirkt dieser Artikel?

Vorgeschlagenes DepthFM: Ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren.

Lassen Sie uns diese Arbeit gemeinsam lesen~

1. Papierinformationen

Titel: DepthFM: Fast Monocular Depth Estimation with Flow Matching

Autoren: Ming Gui, Johannes S. Fischer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, Björn Ommer

Institution: MCML

Originallink: https://arxiv.org/abs/2403.13788

Code-Link: https://github.com/ CompVis/ Depth -fm

Offizielle Homepage: https:// Depthfm.github.io/

2. Zusammenfassung

ist für viele nachgelagerte Besichtigungsaufgaben und -anwendungen von entscheidender Bedeutung. Aktuelle Unterscheidungsmethoden für dieses Problem sind durch verwischende Artefakte eingeschränkt, während generative Methoden auf dem neuesten Stand der Technik aufgrund ihrer SDE-Natur unter einer langsamen Geschwindigkeit der Trainingsproben leiden. Anstatt mit Rauschen zu beginnen, suchen wir nach einer direkten Zuordnung vom Eingabebild zum Tiefenbild. Wir beobachten, dass dies durch Flussanpassung effizient konstruiert werden kann, da seine gerade Flugbahn im Lösungsraum für Effizienz und hohe Qualität sorgt. Unsere Studie zeigt, dass vorab trainierte Bilddiffusionsmodelle als ausreichendes Vorwissen für Deep-Flow-Matching-Modelle verwendet werden können. Bei Benchmarks komplexer Naturszenen zeigt unser leichtgewichtiger Ansatz modernste Leistung bei vorteilhaft niedrigem Rechenaufwand, obwohl er nur auf einer kleinen Menge synthetischer Daten trainiert wird.

3. Effektdemonstration

DepthFM ist ein schnelles Inferenzfluss-Matching-Modell mit starker Zero-Shot-Generalisierungsfähigkeit, das starkes Vorwissen nutzen und leicht auf unbekannte reale Bilder verallgemeinern kann. Nach dem Training mit synthetischen Daten lässt sich das Modell gut auf unbekannte reale Bilder verallgemeinern und passt Tiefenbilder genau an.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Im Vergleich zu anderen hochmodernen Modellen erhält DepthFM mit nur einer Funktionsauswertung deutlich klarere Bilder. Die Tiefenschätzung von Marigold dauert doppelt so lange wie die von DethFM, kann jedoch keine Tiefenkarten mit derselben Granularität erstellen.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

4. Hauptbeiträge

(1) Vorgeschlagenes DepthFM, ein hochmodernes, vielseitiges und schnelles monokulares Tiefenschätzungsmodell. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie Tiefeninpainting und tiefenkonditionierter Bildsynthese.

(2) demonstriert die erfolgreiche Übertragung starker Bild-Prioritäten von Diffusionsmodellen auf Flow-Matching-Modelle, wobei die Abhängigkeit von Trainingsdaten gering ist und keine Bilder aus der realen Welt erforderlich sind.

(3) zeigt, dass das Flow-Matching-Modell effizient ist und Tiefenkarten innerhalb eines einzigen Inferenzschritts synthetisieren kann.

(4) Obwohl DepthFM nur auf synthetische Daten trainiert wurde, schneidet es bei Benchmark-Datensätzen und natürlichen Bildern gut ab.

(5) Verwenden Sie den Oberflächennormalverlust als Hilfsziel, um eine genauere Tiefenschätzung zu erhalten.

(6) Zusätzlich zur Tiefenschätzung kann auch die Zuverlässigkeit seiner Vorhersage zuverlässig vorhergesagt werden.

5. Was ist das konkrete Prinzip?

Trainingspipeline. Das Training ist durch Flussanpassung und Oberflächennormalverlust begrenzt: Für Flussanpassung wird datenabhängiges Flussanpassung verwendet, um das Vektorfeld zwischen der Grundwahrheitstiefe und dem entsprechenden Bild zurückzubilden. Darüber hinaus wird geometrischer Realismus durch einen Oberflächennormalenverlust erreicht.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Datenbezogener Flussabgleich: DepthFM regressiert das geradlinige Vektorfeld zwischen der Bildverteilung und der Tiefenverteilung unter Verwendung von Bild-zu-Tiefen-Paaren. Dieser Ansatz fördert effizientes mehrstufiges Denken ohne Einbußen bei der Leistung.

Feinabstimmung von Diffusion Priors: Die Autoren demonstrieren die erfolgreiche Übertragung leistungsstarker Image Priors von einem Basisbildsynthese-Diffusionsmodell (Stable Diffusion v2-1) auf ein Flow-Matching-Modell, wobei kaum auf Trainingsdaten zurückgegriffen wird und keine echten Daten erforderlich sind -Weltbild.

Hilfsflächennormalverlust: Da DepthFM nur auf synthetischen Daten trainiert wird und die meisten synthetischen Datensätze bodenwahre Oberflächennormalen liefern, wird der Oberflächennormalverlust als Hilfsziel verwendet, um die Genauigkeit der DepthFM-Tiefenschätzung zu verbessern.

6. Experimentelle Ergebnisse Tabelle 1 zeigt qualitativ den Leistungsvergleich von DepthFM mit entsprechenden Modellen auf dem neuesten Stand der Technik. Während andere Modelle für das Training häufig auf große Datensätze angewiesen sind, nutzt DepthFM das umfangreiche Wissen, das dem zugrunde liegenden diffusionsbasierten Modell innewohnt. Diese Methode spart nicht nur Rechenressourcen, sondern betont auch die Anpassungsfähigkeit und Trainingseffizienz des Modells.

Vergleich der diffusionsbasierten Marigold-Tiefenschätzung, des Flow Matching (FM)-Benchmarks und des DepthFM-Modells. Jede Methode wird mit nur einem Ensemblemitglied und mit unterschiedlicher Anzahl von Funktionsauswertungen (NFE) an zwei gemeinsamen Benchmark-Datensätzen evaluiert. Im Vergleich zur FM-Basislinie integriert DepthFM den normalen Verlust und die datenabhängige Kopplung während des Trainings.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Qualitative Ergebnisse für Marigold- und DepthFM-Modelle in unterschiedlicher Anzahl funktionaler Auswertungen. Es ist erwähnenswert, dass Marigold durch einstufige Inferenz keine aussagekräftigen Ergebnisse liefert, während die Ergebnisse von DepthFM bereits die tatsächliche Tiefenkarte zeigen.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Tiefenvervollständigung auf Hypersim. Links: Etwas Tiefe verleihen. Mittel: Tiefe, geschätzt aus der angegebenen Teiltiefe. Rechts: Wahre Tiefe.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

7. Zusammenfassung

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

DepthFM, eine Flow-Matching-Methode zur monokularen Tiefenschätzung. Durch das Erlernen einer direkten Zuordnung zwischen dem Eingabebild und der Tiefe, anstatt eine Normalverteilung in eine Tiefenkarte zu entrauschen, ist dieser Ansatz deutlich effizienter als aktuelle diffusionsbasierte Lösungen und liefert dennoch feinkörnige Tiefenkarten ohne gemeinsame Artefakte des diskriminierenden Paradigmas . DepthFM verwendet als Vorstufe ein vorab trainiertes Bilddiffusionsmodell und überträgt es effektiv auf ein Deep-Flow-Matching-Modell. Daher wird DepthFM nur auf synthetische Daten trainiert, lässt sich aber während der Inferenz dennoch gut auf natürliche Bilder verallgemeinern. Darüber hinaus hat sich gezeigt, dass der zusätzliche Verlust der Oberflächennormalen die Tiefenschätzung verbessert. Der leichtgewichtige Ansatz von DepthFM ist wettbewerbsfähig, schnell und liefert zuverlässige Vertrauensschätzungen.

Leser, die an weiteren experimentellen Ergebnissen und Artikeldetails interessiert sind, können den Originalartikel lesen

Das obige ist der detaillierte Inhalt vonOpen Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung!. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Verwenden Sie ddrescue, um Daten unter Linux wiederherzustellen Verwenden Sie ddrescue, um Daten unter Linux wiederherzustellen Mar 20, 2024 pm 01:37 PM

DDREASE ist ein Tool zum Wiederherstellen von Daten von Datei- oder Blockgeräten wie Festplatten, SSDs, RAM-Disks, CDs, DVDs und USB-Speichergeräten. Es kopiert Daten von einem Blockgerät auf ein anderes, wobei beschädigte Blöcke zurückbleiben und nur gute Blöcke verschoben werden. ddreasue ist ein leistungsstarkes Wiederherstellungstool, das vollständig automatisiert ist, da es während der Wiederherstellungsvorgänge keine Unterbrechungen erfordert. Darüber hinaus kann es dank der ddasue-Map-Datei jederzeit gestoppt und fortgesetzt werden. Weitere wichtige Funktionen von DDREASE sind: Es überschreibt die wiederhergestellten Daten nicht, füllt aber die Lücken im Falle einer iterativen Wiederherstellung. Es kann jedoch gekürzt werden, wenn das Tool explizit dazu aufgefordert wird. Stellen Sie Daten aus mehreren Dateien oder Blöcken in einer einzigen wieder her

Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung! Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung! Apr 03, 2024 pm 12:04 PM

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Hallo, elektrischer Atlas! Der Boston Dynamics-Roboter erwacht wieder zum Leben, seltsame 180-Grad-Bewegungen machen Musk Angst Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas tritt offiziell in die Ära der Elektroroboter ein! Gestern hat sich der hydraulische Atlas einfach „unter Tränen“ von der Bühne der Geschichte zurückgezogen. Heute gab Boston Dynamics bekannt, dass der elektrische Atlas im Einsatz ist. Es scheint, dass Boston Dynamics im Bereich kommerzieller humanoider Roboter entschlossen ist, mit Tesla zu konkurrieren. Nach der Veröffentlichung des neuen Videos wurde es innerhalb von nur zehn Stunden bereits von mehr als einer Million Menschen angesehen. Die alten Leute gehen und neue Rollen entstehen. Das ist eine historische Notwendigkeit. Es besteht kein Zweifel, dass dieses Jahr das explosive Jahr der humanoiden Roboter ist. Netizens kommentierten: Die Weiterentwicklung der Roboter hat dazu geführt, dass die diesjährige Eröffnungsfeier wie Menschen aussieht, und der Freiheitsgrad ist weitaus größer als der von Menschen. Aber ist das wirklich kein Horrorfilm? Zu Beginn des Videos liegt Atlas ruhig auf dem Boden, scheinbar auf dem Rücken. Was folgt, ist atemberaubend

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

Langsame Internetgeschwindigkeiten für Mobilfunkdaten auf dem iPhone: Korrekturen Langsame Internetgeschwindigkeiten für Mobilfunkdaten auf dem iPhone: Korrekturen May 03, 2024 pm 09:01 PM

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Die Vitalität der Superintelligenz erwacht! Aber mit der Einführung der sich selbst aktualisierenden KI müssen sich Mütter keine Sorgen mehr über Datenengpässe machen Die Vitalität der Superintelligenz erwacht! Aber mit der Einführung der sich selbst aktualisierenden KI müssen sich Mütter keine Sorgen mehr über Datenengpässe machen Apr 29, 2024 pm 06:55 PM

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Die Kuaishou-Version von Sora „Ke Ling' steht zum Testen offen: Sie generiert über 120 Sekunden Videos, versteht die Physik besser und kann komplexe Bewegungen genau modellieren Die Kuaishou-Version von Sora „Ke Ling' steht zum Testen offen: Sie generiert über 120 Sekunden Videos, versteht die Physik besser und kann komplexe Bewegungen genau modellieren Jun 11, 2024 am 09:51 AM

Was? Wird Zootopia durch heimische KI in die Realität umgesetzt? Zusammen mit dem Video wird ein neues groß angelegtes inländisches Videogenerationsmodell namens „Keling“ vorgestellt. Sora geht einen ähnlichen technischen Weg und kombiniert eine Reihe selbst entwickelter technologischer Innovationen, um Videos zu produzieren, die nicht nur große und vernünftige Bewegungen aufweisen, sondern auch die Eigenschaften der physischen Welt simulieren und über starke konzeptionelle Kombinationsfähigkeiten und Vorstellungskraft verfügen. Den Daten zufolge unterstützt Keling die Erstellung ultralanger Videos von bis zu 2 Minuten mit 30 Bildern pro Sekunde, mit Auflösungen von bis zu 1080p und unterstützt mehrere Seitenverhältnisse. Ein weiterer wichtiger Punkt ist, dass es sich bei Keling nicht um eine vom Labor veröffentlichte Demo oder Video-Ergebnisdemonstration handelt, sondern um eine Anwendung auf Produktebene, die von Kuaishou, einem führenden Anbieter im Bereich Kurzvideos, gestartet wurde. Darüber hinaus liegt das Hauptaugenmerk darauf, pragmatisch zu sein, keine Blankoschecks auszustellen und sofort nach der Veröffentlichung online zu gehen. Das große Modell von Ke Ling wurde bereits in Kuaiying veröffentlicht.

Die U.S. Air Force präsentiert ihren ersten KI-Kampfjet mit großem Aufsehen! Der Minister führte die Testfahrt persönlich durch, ohne in den gesamten Prozess einzugreifen, und 100.000 Codezeilen wurden 21 Mal getestet. Die U.S. Air Force präsentiert ihren ersten KI-Kampfjet mit großem Aufsehen! Der Minister führte die Testfahrt persönlich durch, ohne in den gesamten Prozess einzugreifen, und 100.000 Codezeilen wurden 21 Mal getestet. May 07, 2024 pm 05:00 PM

Kürzlich wurde die Militärwelt von der Nachricht überwältigt: US-Militärkampfflugzeuge können jetzt mithilfe von KI vollautomatische Luftkämpfe absolvieren. Ja, erst kürzlich wurde der KI-Kampfjet des US-Militärs zum ersten Mal der Öffentlichkeit zugänglich gemacht und sein Geheimnis gelüftet. Der vollständige Name dieses Jägers lautet „Variable Stability Simulator Test Aircraft“ (VISTA). Er wurde vom Minister der US-Luftwaffe persönlich geflogen, um einen Eins-gegen-eins-Luftkampf zu simulieren. Am 2. Mai startete US-Luftwaffenminister Frank Kendall mit einer X-62AVISTA auf der Edwards Air Force Base. Beachten Sie, dass während des einstündigen Fluges alle Flugaktionen autonom von der KI durchgeführt wurden! Kendall sagte: „In den letzten Jahrzehnten haben wir über das unbegrenzte Potenzial des autonomen Luft-Luft-Kampfes nachgedacht, aber es schien immer unerreichbar.“ Nun jedoch,

See all articles