Heim Datenbank MySQL-Tutorial SQL语言快速入门之三_MySQL

SQL语言快速入门之三_MySQL

Jun 01, 2016 pm 02:05 PM
store 使用 入门 快速 uns 数据 查询 语言

我们日常使用SQL语言的工作过程中,使用最多的还是从已经建立好的数据库中查询信息。下面,我们就来详细介绍一下如何使用SQL语言实现各种数据库查询操作。

SELECT…FROM

  为方便讲解,我们在数据库中创建名为Store_Information的如下数据表。

Store_Information

Store_Name
Sales
Date

Los Angeles
$1500
Jan-10-2000

San Diego
$250
Jan-11-2000

Los Angeles
$300
Jan-12-2000

Boston
$700
Jan-12-2000


  SQL语言中用于数据库查询的最简单的命令就是SELECT…FROM,语法格式为:

SELECT "column_name" FROM "table_name"

例如,如果我们希望查询Store_Information数据表中所有的商店名称时,可以使用如下命令:

SELECT store_name FROM Store_Information

查询结果显示为:

Store_Name

Los Angeles

San Diego

Los Angeles

Boston

如果用户希望一次查询多个字段,可以将所要查询的字段名称依次加入SELECT关键字之后,中间用“,”隔开即可。

DISTINCT

  SELECT关键字支持用户查询数据表中指定字段的所有数据,但是这样有时就会不可避免的出现重复信息。如果用户希望只查询那些具有不同记录值的信息的话,可以使用SQL语言的DISTINCT关键字。语法格式如下:

SELECT DISTINCT "column_name"

FROM "table_name"

例如,我们可以使用以下命令查询Store_Information数据表具有不同记录值的所有记录。

SELECT DISTINCT Store_Name FROM Store_Information

查询结果如下:

Store_Name

Los Angeles

San Diego

Boston

WHERE

  除了选择具有不同记录值的记录之外,有时我们可能还会需要根据某些条件对数据库中的数据进行查询。例如,我们可能需要查询Store_Information数据表中销售额超过1000美圆的商店。为此,我们可以使用SQL语言的WHERE关键字设定查询条件。语法格式如下:

SELECT "column_name"

FROM "table_name"

WHERE "condition"

由此,我们可以使用如下命令查询销售额超过1000美圆的商店信息:

SELECT store_name FROM Store_Information WHERE Sales > 1000

查询结果显示为:

store_name

Los Angeles

运算函数

  现在,我们已经了解到在使用SQL语言进行数据库查询操作时可以通过对数值的判断设定灵活的查询条件。为了增强对运算的支持能力,SQL提供了众多实用的运算函数供广大用户使用。例如,我们可以直接在SQL命令中调用SUM或AVG这两个分别用于计算总数和平均数的函数。语法格式如下:

SELECT "function type"("column_name")

FROM "table_name"

如果我们希望查询Store_Information数据表中所有商店的总销售额的话,可以使用如下命令:

SELECT SUM(Sales) FROM Store_Information

查询结果显示为:

SUM(Sales)

$2750

COUNT

  除了SUM和AVG函数之外,COUNT函数是SQL语言中另一个较为常用的运算函数。COUNT函数可以用来计算数据表中指定字段所包含的记录数目。语法格式为:

SELECT COUNT("column_name")

FROM "table_name"

例如,如果我们希望查询Store_Information数据表中的有关商店的记录条数时,可以使用如下命令:

SELECT COUNT(store_name)

FROM Store_Information

查询结果显示为:

Count(store_name)

4

COUNT函数可以和DISTINCT关键字一起使用从而可以查询数据表中指定字段中所有具有不同记录值的记录数目。例如,如果我们希望查询Store_Information数据表中不同商店的数目时,可以使用如下命令:

SELECT COUNT(DISTINCT store_name)

FROM Store_Information

查询结果显示为:

Count(DISTINCT store_name)

3

GROUP BY

下面我们来进一步看一下SQL语言中的集合函数。上文中,我们曾使用SUM函数计算所有商店的销售总额,如果我们希望计算每一家商店各自的总销售额时该怎么办呢?要实现这一目的我们需要做两件事:首先,我们需要查询商店名称和销售额两个字段;然后,我们使用SQL语言的GROUP BY命令将销售额按照不同的商店进行分组,从而计算出不同商店的销售总额。GROUP BY命令的语法格式为:

SELECT "column_name1", SUM("column_name2")

FROM "table_name"

GROUP BY "column_name1"

我们可以使用如下命令实现上述查询目的:

SELECT store_name, SUM(Sales)

FROM Store_Information

GROUP BY store_name

查询结果显示为:

store_name SUM(Sales)

Los Angeles $1800

San Diego $250

Boston $700

小注:

GROUP BY关键字一般应用于同时查询多个字段并对字段进行算术运算的SQL命令中。

HAVING

用户在使用SQL语言的过程中可能希望解决的另一个问题就是对由sum或其它集合函数运算结果的输出进行限制。例如,我们可能只希望看到Store_Information数据表中销售总额超过1500美圆的商店的信息,这时我们就需要使用HAVING从句。语法格式为:

SELECT "column_name1", SUM("column_name2")

FROM "table_name"

GROUP BY "column_name1"

HAVING (arithematic function condition)

(GROUP BY从句可选)

由此,我们可以使用如下命令实现上述查询目的:

SELECT store_name, SUM(sales)

FROM Store_Information

GROUP BY store_name

HAVING SUM(sales) > 1500

查询结果显示为:

store_name SUM(Sales)

Los Angeles $1800

小注:

SQL语言中设定集合函数的查询条件时使用HAVING从句而不是WHERE从句。通常情况下,HAVING从句被放置在SQL命令的结尾处。

ALIAS

下面,我们重点介绍一下如何在SQL命令中设定别名。SQL语言中一般使用两种类型的别名,分别为字段别名和数据表别名。

简单的说,使用字段别名可以帮助我们有效的组织查询的输出结果。例如,上文所列举的多个实例中,当我们计算商店销售总额时,显示结果中就会出现SUM(sales)。虽然SUM(sales)并不会对我们理解查询结果带来不便,但是如果我们需要在查询中使用多项复杂运算时,显示结果就不会这么直观了。如果这时我们使用字段别名就会极大的提高查询结果的可读性。

对于数据表别名,我们可以通过将别名直接放置在FROM从句中数据表名称的后面设定。数据表别名在我们下面将要讲述的连接多个数据表进行查询的操作中极为有用。

字段和数据表别名的语法格式如下:

SELECT "table_alias"."column_name1" "column_alias"

FROM "table_name" "table_alias"

即别名都直接放置在各自对应名称的后面,中间用空格分开。

以Store_Information数据表为例,我们可以在GROUP BY一节中所使用的SQL命令中设置如下字段和数据表别名:

SELECT A1.store_name Store, SUM(Sales) "Total Sales"

FROM Store_Information A1

GROUP BY A1.store_name

查询结果显示为:

Store Total Sales

Los Angeles $1800

San Diego $250

Boston $700

连接多个数据表

最后,我们来看一下如果使用SQL语言连接多个数据表,实现对多个数据表的查询。为方便讲解,我们在数据库中分别创建了两个名为Store_Information和Region的数据表。

Store_Information

Store_Name
Sales
Date

Los Angeles
$1500
Jan-10-2000

San Diego
$250
Jan-11-2000

Los Angeles
$300
Jan-12-2000

Boston
$700
Jan-12-2000


Region

Region_Name
Store_Name

East
Boston

East
New York

West
Los Angeles

West
San Diego


下面,我们就来看一下通过数据表的连接实现按不同区域查询销售额。

我们注意到在名为Region的数据表中包含区域和商店两个字段信息,而在名为Store_Information的数据表中则包含每一家商店的销售信息。因此,为了得到按区域划分的销售信息,我们需要将两个不同数据表的信息结合在一起进行查询。通过对上述两个数据表的分析,我们发现每个数据表中都包含一个名为Store_Name的字段,因此,我们可以使用如下命令实现查询目的:

SELECT A1.region_name REGION, SUM(A2.Sales) SALES

FROM Geography A1, Store_Information A2

WHERE A1.store_name = A2.store_name

GROUP BY A1.region_name

查询结果显示为:

REGION SALES

East $700

West $2050

说明:

上述查询命令的前两行用于指定所要查询的目标字段,分别为Region数据表中的Region_Name字段和Store_Information数据表中Sales字段的记录值总数。这里,我们设定两个字段的别名分别为REGION和SALES,两个数据表的别名分别为A1和A2。如果我们只使用字段别名而不设定数据表别名的话,上述SQL命令的第一行就变成 如下形式:

SELECT Region.Region_Name REGION, SUM(Store_Information.Sales) SALES

由此我们可以看出有效的使用数据表别名,可以极大的简化对多个数据表进行操作的SQL命令。

上述查询命令的第3行为WHERE从句,正是该从句设定了两个数据表的连接条件。因为我们希望确保Region数据表中的Store_Name字段能够与Store_Information数据表中的同名字段相对应,所以我们规定两个字段的记录值应当相等。在连接多个数据表时,一定要准确设定数据表的连接条件,如果WHERE从句设定不正确,则可能导致查询结果中出现众多不相关的数据



Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Ein Diffusionsmodell-Tutorial, das Ihre Zeit wert ist, von der Purdue University Ein Diffusionsmodell-Tutorial, das Ihre Zeit wert ist, von der Purdue University Apr 07, 2024 am 09:01 AM

Diffusion kann nicht nur besser imitieren, sondern auch „erschaffen“. Das Diffusionsmodell (DiffusionModel) ist ein Bilderzeugungsmodell. Im Vergleich zu bekannten Algorithmen wie GAN und VAE im Bereich der KI verfolgt das Diffusionsmodell einen anderen Ansatz. Seine Hauptidee besteht darin, dem Bild zunächst Rauschen hinzuzufügen und es dann schrittweise zu entrauschen. Das Entrauschen und Wiederherstellen des Originalbilds ist der Kernbestandteil des Algorithmus. Der endgültige Algorithmus ist in der Lage, aus einem zufälligen verrauschten Bild ein Bild zu erzeugen. In den letzten Jahren hat das phänomenale Wachstum der generativen KI viele spannende Anwendungen in der Text-zu-Bild-Generierung, Videogenerierung und mehr ermöglicht. Das Grundprinzip dieser generativen Werkzeuge ist das Konzept der Diffusion, ein spezieller Sampling-Mechanismus, der die Einschränkungen bisheriger Methoden überwindet.

Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung! Open Source! Jenseits von ZoeDepth! DepthFM: Schnelle und genaue monokulare Tiefenschätzung! Apr 03, 2024 pm 12:04 PM

0.Was bewirkt dieser Artikel? Wir schlagen DepthFM vor: ein vielseitiges und schnelles generatives monokulares Tiefenschätzungsmodell auf dem neuesten Stand der Technik. Zusätzlich zu herkömmlichen Tiefenschätzungsaufgaben demonstriert DepthFM auch hochmoderne Fähigkeiten bei nachgelagerten Aufgaben wie dem Tiefen-Inpainting. DepthFM ist effizient und kann Tiefenkarten innerhalb weniger Inferenzschritte synthetisieren. Lassen Sie uns diese Arbeit gemeinsam lesen ~ 1. Titel der Papierinformationen: DepthFM: FastMonocularDepthEstimationwithFlowMatching Autor: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Generieren Sie PPT mit einem Klick! Kimi: Lassen Sie zuerst die „PPT-Wanderarbeiter' populär werden Generieren Sie PPT mit einem Klick! Kimi: Lassen Sie zuerst die „PPT-Wanderarbeiter' populär werden Aug 01, 2024 pm 03:28 PM

Kimi: In nur einem Satz, in nur zehn Sekunden ist ein PPT fertig. PPT ist so nervig! Um ein Meeting abzuhalten, benötigen Sie einen PPT; um einen wöchentlichen Bericht zu schreiben, müssen Sie einen PPT vorlegen, auch wenn Sie jemanden des Betrugs beschuldigen PPT. Das College ähnelt eher dem Studium eines PPT-Hauptfachs. Man schaut sich PPT im Unterricht an und macht PPT nach dem Unterricht. Als Dennis Austin vor 37 Jahren PPT erfand, hatte er vielleicht nicht damit gerechnet, dass PPT eines Tages so weit verbreitet sein würde. Wenn wir über unsere harte Erfahrung bei der Erstellung von PPT sprechen, treiben uns Tränen in die Augen. „Es dauerte drei Monate, ein PPT mit mehr als 20 Seiten zu erstellen, und ich habe es Dutzende Male überarbeitet. Als ich das PPT sah, musste ich mich übergeben.“ war PPT.“ Wenn Sie ein spontanes Meeting haben, sollten Sie es tun

Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Google ist begeistert: JAX-Leistung übertrifft Pytorch und TensorFlow! Es könnte die schnellste Wahl für das GPU-Inferenztraining werden Apr 01, 2024 pm 07:46 PM

Die von Google geförderte Leistung von JAX hat in jüngsten Benchmark-Tests die von Pytorch und TensorFlow übertroffen und belegt bei 7 Indikatoren den ersten Platz. Und der Test wurde nicht auf der TPU mit der besten JAX-Leistung durchgeführt. Obwohl unter Entwicklern Pytorch immer noch beliebter ist als Tensorflow. Aber in Zukunft werden möglicherweise mehr große Modelle auf Basis der JAX-Plattform trainiert und ausgeführt. Modelle Kürzlich hat das Keras-Team drei Backends (TensorFlow, JAX, PyTorch) mit der nativen PyTorch-Implementierung und Keras2 mit TensorFlow verglichen. Zunächst wählen sie eine Reihe von Mainstream-Inhalten aus

So überprüfen Sie Ihre akademischen Qualifikationen auf Xuexin.com So überprüfen Sie Ihre akademischen Qualifikationen auf Xuexin.com Mar 28, 2024 pm 04:31 PM

Wie kann ich meine akademischen Qualifikationen auf Xuexin.com überprüfen? Sie können Ihre akademischen Qualifikationen auf Xuexin.com überprüfen. Viele Benutzer wissen nicht, wie sie ihre akademischen Qualifikationen auf Xuexin.com überprüfen können Benutzer kommen vorbei und schauen sich um! Tutorial zur Nutzung von Xuexin.com: So überprüfen Sie Ihre akademischen Qualifikationen auf Xuexin.com 1. Zugang zu Xuexin.com: https://www.chsi.com.cn/ 2. Website-Abfrage: Schritt 1: Klicken Sie auf die Adresse von Xuexin.com Um die Startseite aufzurufen, klicken Sie oben auf [Bildungsabfrage]; Schritt 2: Klicken Sie auf der neuesten Webseite auf [Abfrage], wie durch den Pfeil in der Abbildung unten dargestellt. Schritt 3: Klicken Sie dann auf der neuen Seite auf [Anmelden bei akademischer Kreditdatei]. Schritt 4: Geben Sie auf der Anmeldeseite die Informationen ein und klicken Sie auf [Anmelden].

Die Vitalität der Superintelligenz erwacht! Aber mit der Einführung der sich selbst aktualisierenden KI müssen sich Mütter keine Sorgen mehr über Datenengpässe machen Die Vitalität der Superintelligenz erwacht! Aber mit der Einführung der sich selbst aktualisierenden KI müssen sich Mütter keine Sorgen mehr über Datenengpässe machen Apr 29, 2024 pm 06:55 PM

Ich weine zu Tode. Die Daten im Internet reichen überhaupt nicht aus. Das Trainingsmodell sieht aus wie „Die Tribute von Panem“, und KI-Forscher auf der ganzen Welt machen sich Gedanken darüber, wie sie diese datenhungrigen Esser ernähren sollen. Dieses Problem tritt insbesondere bei multimodalen Aufgaben auf. Zu einer Zeit, als sie ratlos waren, nutzte ein Start-up-Team der Abteilung der Renmin-Universität von China sein eigenes neues Modell, um als erstes in China einen „modellgenerierten Datenfeed selbst“ in die Realität umzusetzen. Darüber hinaus handelt es sich um einen zweigleisigen Ansatz auf der Verständnisseite und der Generierungsseite. Beide Seiten können hochwertige, multimodale neue Daten generieren und Datenrückmeldungen an das Modell selbst liefern. Was ist ein Modell? Awaker 1.0, ein großes multimodales Modell, das gerade im Zhongguancun-Forum erschienen ist. Wer ist das Team? Sophon-Motor. Gegründet von Gao Yizhao, einem Doktoranden an der Hillhouse School of Artificial Intelligence der Renmin University.

Langsame Internetgeschwindigkeiten für Mobilfunkdaten auf dem iPhone: Korrekturen Langsame Internetgeschwindigkeiten für Mobilfunkdaten auf dem iPhone: Korrekturen May 03, 2024 pm 09:01 PM

Stehen Sie vor einer Verzögerung oder einer langsamen mobilen Datenverbindung auf dem iPhone? Normalerweise hängt die Stärke des Mobilfunk-Internets auf Ihrem Telefon von mehreren Faktoren ab, wie z. B. der Region, dem Mobilfunknetztyp, dem Roaming-Typ usw. Es gibt einige Dinge, die Sie tun können, um eine schnellere und zuverlässigere Mobilfunk-Internetverbindung zu erhalten. Fix 1 – Neustart des iPhone erzwingen Manchmal werden durch einen erzwungenen Neustart Ihres Geräts viele Dinge zurückgesetzt, einschließlich der Mobilfunkverbindung. Schritt 1 – Drücken Sie einfach einmal die Lauter-Taste und lassen Sie sie los. Drücken Sie anschließend die Leiser-Taste und lassen Sie sie wieder los. Schritt 2 – Der nächste Teil des Prozesses besteht darin, die Taste auf der rechten Seite gedrückt zu halten. Lassen Sie das iPhone den Neustart abschließen. Aktivieren Sie Mobilfunkdaten und überprüfen Sie die Netzwerkgeschwindigkeit. Überprüfen Sie es erneut. Fix 2 – Datenmodus ändern 5G bietet zwar bessere Netzwerkgeschwindigkeiten, funktioniert jedoch besser, wenn das Signal schwächer ist

Alle CVPR 2024-Auszeichnungen bekannt gegeben! Fast 10.000 Menschen nahmen offline an der Konferenz teil und ein chinesischer Forscher von Google gewann den Preis für den besten Beitrag Alle CVPR 2024-Auszeichnungen bekannt gegeben! Fast 10.000 Menschen nahmen offline an der Konferenz teil und ein chinesischer Forscher von Google gewann den Preis für den besten Beitrag Jun 20, 2024 pm 05:43 PM

Am frühen Morgen des 20. Juni (Pekinger Zeit) gab CVPR2024, die wichtigste internationale Computer-Vision-Konferenz in Seattle, offiziell die besten Beiträge und andere Auszeichnungen bekannt. In diesem Jahr wurden insgesamt 10 Arbeiten ausgezeichnet, darunter zwei beste Arbeiten und zwei beste studentische Arbeiten. Darüber hinaus gab es zwei Nominierungen für die beste Arbeit und vier Nominierungen für die beste studentische Arbeit. Die Top-Konferenz im Bereich Computer Vision (CV) ist die CVPR, die jedes Jahr zahlreiche Forschungseinrichtungen und Universitäten anzieht. Laut Statistik wurden in diesem Jahr insgesamt 11.532 Arbeiten eingereicht, von denen 2.719 angenommen wurden, was einer Annahmequote von 23,6 % entspricht. Laut der statistischen Analyse der CVPR2024-Daten des Georgia Institute of Technology befassen sich die meisten Arbeiten aus Sicht der Forschungsthemen mit der Bild- und Videosynthese und -generierung (Imageandvideosyn

See all articles