Heim Backend-Entwicklung PHP-Tutorial Anwendung von PHP-Funktionen in der Bildverarbeitung

Anwendung von PHP-Funktionen in der Bildverarbeitung

Apr 15, 2024 pm 05:57 PM
图像处理 php 函数

PHP 提供了丰富的图像处理函数,广泛应用于操作、编辑和增强图像。这些函数包括:改变图像大小:imagecopyresized裁剪图像:imagecrop旋转图像:imagerotate添加水印:imagecopymerge

PHP 函数在图像处理中的应用

PHP 函数在图像处理中的应用

PHP 语言提供了一系列实用的函数,可用于执行各种图像处理任务。这些函数可以在图像的操作、编辑和增强方面进行广泛使用。

改变图像大小

imagecopyresized($dst_image, $src_image, 0, 0, 0, 0, 200, 100, 500, 250);
Nach dem Login kopieren

裁剪图像

imagecrop($image, ['x' => 100, 'y' => 100, 'width' => 200, 'height' => 200]);
Nach dem Login kopieren

旋转图像

imagerotate($image, 45, 0);
Nach dem Login kopieren

添加水印

imagecopymerge($dst_image, $watermark, 10, 10, 0, 0, 50, 50, 50);
Nach dem Login kopieren

实战案例:缩略图生成

为了演示 PHP 图像处理函数的用法,让我们创建一个函数来生成缩略图:

function createThumbnail($filename, $width, $height)
{
    // 获取原始图像的信息
    list($originalWidth, $originalHeight) = getimagesize($filename);

    // 计算缩放比例
    $scaleX = $width / $originalWidth;
    $scaleY = $height / $originalHeight;

    // 创建一个新图像(透明的)
    $thumb = imagecreatetruecolor($width, $height);
    imagealphablending($thumb, false);
    imagesavealpha($thumb, true);

    // 保存缩略图
    switch (pathinfo($filename, PATHINFO_EXTENSION)) {
        case 'png':
            imagepng($thumb, $filename);
            break;
        case 'jpeg':
        case 'jpg':
            imagejpeg($thumb, $filename, 90);
            break;
    }
}
Nach dem Login kopieren

你可以使用此函数轻松地生成任何图像的缩略图,它自动缩放并保持图像的原始宽高比。

Das obige ist der detaillierte Inhalt vonAnwendung von PHP-Funktionen in der Bildverarbeitung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Wie wird die Wasserstein-Distanz bei Bildverarbeitungsaufgaben verwendet? Wie wird die Wasserstein-Distanz bei Bildverarbeitungsaufgaben verwendet? Jan 23, 2024 am 10:39 AM

Die Wasserstein-Distanz, auch EarthMover-Distanz (EMD) genannt, ist eine Metrik zur Messung der Differenz zwischen zwei Wahrscheinlichkeitsverteilungen. Im Vergleich zur herkömmlichen KL-Divergenz oder JS-Divergenz berücksichtigt die Wasserstein-Distanz die Strukturinformationen zwischen Verteilungen und weist daher bei vielen Bildverarbeitungsaufgaben eine bessere Leistung auf. Durch die Berechnung der minimalen Transportkosten zwischen zwei Verteilungen ist die Wasserstein-Distanz in der Lage, den minimalen Arbeitsaufwand zu messen, der erforderlich ist, um eine Verteilung in eine andere umzuwandeln. Diese Metrik ist in der Lage, die geometrischen Unterschiede zwischen Verteilungen zu erfassen und spielt daher eine wichtige Rolle bei Aufgaben wie der Bilderzeugung und der Stilübertragung. Daher wird die Wasserstein-Distanz zum Konzept

Eingehende Analyse der Funktionsprinzipien und Eigenschaften des Vision Transformer (VIT)-Modells Eingehende Analyse der Funktionsprinzipien und Eigenschaften des Vision Transformer (VIT)-Modells Jan 23, 2024 am 08:30 AM

VisionTransformer (VIT) ist ein von Google vorgeschlagenes Transformer-basiertes Bildklassifizierungsmodell. Im Gegensatz zu herkömmlichen CNN-Modellen stellt VIT Bilder als Sequenzen dar und lernt die Bildstruktur durch Vorhersage der Klassenbezeichnung des Bildes. Um dies zu erreichen, unterteilt VIT das Eingabebild in mehrere Patches, verkettet die Pixel in jedem Patch über Kanäle und führt dann eine lineare Projektion durch, um die gewünschten Eingabeabmessungen zu erreichen. Schließlich wird jeder Patch zu einem einzelnen Vektor zusammengefasst, der die Eingabesequenz bildet. Durch den Selbstaufmerksamkeitsmechanismus von Transformer ist VIT in der Lage, die Beziehung zwischen verschiedenen Patches zu erfassen und eine effektive Merkmalsextraktion und Klassifizierungsvorhersage durchzuführen. Diese serialisierte Bilddarstellung ist

Wie man KI-Technologie nutzt, um alte Fotos wiederherzustellen (mit Beispielen und Code-Analyse) Wie man KI-Technologie nutzt, um alte Fotos wiederherzustellen (mit Beispielen und Code-Analyse) Jan 24, 2024 pm 09:57 PM

Bei der Restaurierung alter Fotos handelt es sich um eine Methode zur Nutzung künstlicher Intelligenz, um alte Fotos zu reparieren, aufzuwerten und zu verbessern. Mithilfe von Computer-Vision- und maschinellen Lernalgorithmen kann die Technologie Schäden und Unvollkommenheiten in alten Fotos automatisch erkennen und reparieren, sodass diese klarer, natürlicher und realistischer aussehen. Die technischen Prinzipien der Restaurierung alter Fotos umfassen hauptsächlich die folgenden Aspekte: 1. Bildrauschen und -verbesserung Bei der Wiederherstellung alter Fotos müssen diese zunächst entrauscht und verbessert werden. Bildverarbeitungsalgorithmen und -filter wie Mittelwertfilterung, Gaußsche Filterung, bilaterale Filterung usw. können zur Lösung von Rausch- und Farbfleckproblemen eingesetzt werden, wodurch die Qualität von Fotos verbessert wird. 2. Bildwiederherstellung und -reparatur Bei alten Fotos können einige Mängel und Schäden wie Kratzer, Risse, Ausbleichen usw. auftreten. Diese Probleme können durch Bildwiederherstellungs- und Reparaturalgorithmen gelöst werden

Anwendung der KI-Technologie bei der hochauflösenden Bildrekonstruktion Anwendung der KI-Technologie bei der hochauflösenden Bildrekonstruktion Jan 23, 2024 am 08:06 AM

Bei der superauflösenden Bildrekonstruktion werden hochauflösende Bilder aus Bildern mit niedriger Auflösung mithilfe von Deep-Learning-Techniken wie Convolutional Neural Networks (CNN) und Generative Adversarial Networks (GAN) generiert. Das Ziel dieser Methode besteht darin, die Qualität und Detailgenauigkeit von Bildern zu verbessern, indem Bilder mit niedriger Auflösung in Bilder mit hoher Auflösung umgewandelt werden. Diese Technologie findet breite Anwendung in vielen Bereichen, beispielsweise in der medizinischen Bildgebung, Überwachungskameras, Satellitenbildern usw. Durch die hochauflösende Bildrekonstruktion können wir klarere und detailliertere Bilder erhalten, die dabei helfen, Ziele und Merkmale in Bildern genauer zu analysieren und zu identifizieren. Rekonstruktionsmethoden Hochauflösende Bildrekonstruktionsmethoden können im Allgemeinen in zwei Kategorien unterteilt werden: interpolationsbasierte Methoden und Deep-Learning-basierte Methoden. 1) Interpolationsbasierte Methode Hochauflösende Bildrekonstruktion basierend auf Interpolation

Umgang mit Bildverarbeitungs- und Grafikschnittstellendesign-Problemen in der C#-Entwicklung Umgang mit Bildverarbeitungs- und Grafikschnittstellendesign-Problemen in der C#-Entwicklung Oct 08, 2023 pm 07:06 PM

Für den Umgang mit Bildverarbeitungs- und grafischen Schnittstellendesignproblemen in der C#-Entwicklung sind spezifische Codebeispiele erforderlich. Einführung: In der modernen Softwareentwicklung sind Bildverarbeitung und grafisches Schnittstellendesign gängige Anforderungen. Als universelle Programmiersprache auf hoher Ebene verfügt C# über leistungsstarke Bildverarbeitungs- und grafische Schnittstellendesignfunktionen. Dieser Artikel basiert auf C#, erläutert den Umgang mit Bildverarbeitungs- und Grafikschnittstellendesign-Problemen und gibt detaillierte Codebeispiele. 1. Probleme bei der Bildverarbeitung: Lesen und Anzeigen von Bildern: In C# sind das Lesen und Anzeigen von Bildern grundlegende Vorgänge. Kann verwendet werden.N

SIFT-Algorithmus (Scale Invariant Features). SIFT-Algorithmus (Scale Invariant Features). Jan 22, 2024 pm 05:09 PM

Der Scale Invariant Feature Transform (SIFT)-Algorithmus ist ein Merkmalsextraktionsalgorithmus, der in den Bereichen Bildverarbeitung und Computer Vision verwendet wird. Dieser Algorithmus wurde 1999 vorgeschlagen, um die Objekterkennung und die Matching-Leistung in Computer-Vision-Systemen zu verbessern. Der SIFT-Algorithmus ist robust und genau und wird häufig in der Bilderkennung, dreidimensionalen Rekonstruktion, Zielerkennung, Videoverfolgung und anderen Bereichen eingesetzt. Es erreicht Skaleninvarianz, indem es Schlüsselpunkte in mehreren Skalenräumen erkennt und lokale Merkmalsdeskriptoren um die Schlüsselpunkte herum extrahiert. Zu den Hauptschritten des SIFT-Algorithmus gehören die Skalenraumkonstruktion, die Erkennung von Schlüsselpunkten, die Positionierung von Schlüsselpunkten, die Richtungszuweisung und die Generierung von Merkmalsdeskriptoren. Durch diese Schritte kann der SIFT-Algorithmus robuste und einzigartige Merkmale extrahieren und so eine effiziente Bildverarbeitung erreichen.

Bildrauschen mithilfe von Faltungs-Neuronalen Netzen Bildrauschen mithilfe von Faltungs-Neuronalen Netzen Jan 23, 2024 pm 11:48 PM

Faltungs-Neuronale Netze eignen sich gut für Aufgaben zur Bildrauschunterdrückung. Es nutzt die erlernten Filter, um das Rauschen zu filtern und so das Originalbild wiederherzustellen. In diesem Artikel wird die Methode zur Bildentrauschung basierend auf einem Faltungs-Neuronalen Netzwerk ausführlich vorgestellt. 1. Überblick über das Convolutional Neural Network Das Convolutional Neural Network ist ein Deep-Learning-Algorithmus, der eine Kombination aus mehreren Faltungsschichten, Pooling-Schichten und vollständig verbundenen Schichten verwendet, um Bildmerkmale zu lernen und zu klassifizieren. In der Faltungsschicht werden die lokalen Merkmale des Bildes durch Faltungsoperationen extrahiert und so die räumliche Korrelation im Bild erfasst. Die Pooling-Schicht reduziert den Rechenaufwand durch Reduzierung der Feature-Dimension und behält die Hauptfeatures bei. Die vollständig verbundene Schicht ist für die Zuordnung erlernter Merkmale und Beschriftungen zur Implementierung der Bildklassifizierung oder anderer Aufgaben verantwortlich. Das Design dieser Netzwerkstruktur macht das Faltungs-Neuronale Netzwerk für die Bildverarbeitung und -erkennung nützlich.

So führen Sie Bildverarbeitung und -erkennung in Python durch So führen Sie Bildverarbeitung und -erkennung in Python durch Oct 20, 2023 pm 12:10 PM

So führen Sie Bildverarbeitung und -erkennung in Python durch Zusammenfassung: Moderne Technologie hat Bildverarbeitung und -erkennung in vielen Bereichen zu einem wichtigen Werkzeug gemacht. Python ist eine einfach zu erlernende und zu verwendende Programmiersprache mit umfangreichen Bildverarbeitungs- und Erkennungsbibliotheken. In diesem Artikel wird die Verwendung von Python für die Bildverarbeitung und -erkennung vorgestellt und spezifische Codebeispiele bereitgestellt. Bildverarbeitung: Bei der Bildverarbeitung werden verschiedene Vorgänge und Transformationen an Bildern durchgeführt, um die Bildqualität zu verbessern, Informationen aus Bildern zu extrahieren usw. PIL-Bibliothek in Python (Pi

See all articles