Das größte Risiko, dem die Technologie der künstlichen Intelligenz derzeit ausgesetzt ist, besteht darin, dass die Entwicklungs- und Anwendungsgeschwindigkeit großer Sprachmodelle (LLM) und generativer Technologie der künstlichen Intelligenz die Geschwindigkeit von Sicherheit und Governance bei weitem übertroffen hat.
Die Nutzung generativer KI und großer Sprachmodellprodukte von Unternehmen wie OpenAI, Anthropic, Google und Microsoft nimmt exponentiell zu. Gleichzeitig nehmen auch Open-Source-Lösungen für große Sprachmodelle schnell zu. Open-Source-Communitys für künstliche Intelligenz wie HuggingFace bieten eine große Anzahl von Open-Source-Modellen, Datensätzen und KI-Anwendungen.
Um die Entwicklung künstlicher Intelligenz voranzutreiben, entwickeln und stellen Branchenorganisationen wie OWASP, OpenSSF und CISA aktiv wichtige Ressourcen für die Sicherheit und Governance künstlicher Intelligenz bereit, wie z. B. OWASP AI Exchange, AI Security and Privacy Guide und das Top-Ten-Risikoliste großer Sprachmodelle (LLMTop10).
Kürzlich hat OWASP eine umfassende Checkliste für Cybersicherheit und Governance für Sprachmodelle veröffentlicht, die die Lücke in der Sicherheitsgovernance für generative künstliche Intelligenz schließt. Der spezifische Inhalt lautet wie folgt:
OWASPs Sprachmodell für Cybersicherheit und Governance Die Checkliste definiert die Unterschiede zwischen künstlicher Intelligenz, maschinellem Lernen, generativer KI und großen Sprachmodellen.
Zum Beispiel lautet OWASPs Definition von generativer KI: eine Art maschinelles Lernen, die sich auf die Erstellung neuer Daten konzentriert, während große Sprachmodelle ein KI-Modell sind, das zur Verarbeitung und Generierung menschenähnlicher „natürlicher Inhalte“ verwendet wird – – Sie treffen Vorhersagen auf der Grundlage dieser die Eingabe, die ihnen bereitgestellt wird, und die Ausgabe ist menschenähnlicher „natürlicher Inhalt“.
In Bezug auf die zuvor veröffentlichte „Big Language Model Top Ten Threat List“ ist OWASP davon überzeugt, dass sie Cybersicherheitsexperten dabei helfen kann, mit der sich schnell entwickelnden KI-Technologie Schritt zu halten, wichtige Bedrohungen zu identifizieren und sicherzustellen, dass Unternehmen über grundlegende Sicherheitskontrollen zum Schutz und zur Unterstützung der Nutzung verfügen Geschäft mit generativer künstlicher Intelligenz und großen Sprachmodellen. OWASP ist jedoch der Ansicht, dass diese Liste nicht vollständig ist und auf der Grundlage der Entwicklung generativer künstlicher Intelligenz kontinuierlich verbessert werden muss.
Die Bereitstellung der Sicherheits-Governance-Strategie für das große Sprachmodell von OWASP ist in sechs Schritte unterteilt:
2. Bedrohungsmodellierung
3. Checkliste für künstliche Intelligenz-Assets
OWASP betont, dass Unternehmen nicht nur verstehen müssen, welche Tools und Dienste intern verwendet werden, sondern auch deren Eigentümer, d. h. wer für die Nutzung dieser Tools und Dienste verantwortlich ist. Die Checkliste empfiehlt außerdem, KI-Komponenten in eine Software-Stückliste (SBOM) aufzunehmen und KI-Datenquellen und ihre jeweiligen Empfindlichkeiten zu dokumentieren.
Zusätzlich zur Inventarisierung vorhandener KI-Tools sollten Unternehmen auch einen sicheren Prozess für die Aufnahme zukünftiger KI-Tools und -Dienste in die Bestandsaufnahme etablieren.
4. Schulung zur Sensibilisierung für künstliche Intelligenz und Datenschutz
Dazu gehört es, den Mitarbeitern dabei zu helfen, bestehende Initiativen zur generativen KI/großen Sprachmodelle, Technologien und deren Fähigkeiten sowie wichtige Sicherheitsaspekte wie Datenschutzverletzungen zu verstehen. Darüber hinaus ist der Aufbau einer Sicherheitskultur des Vertrauens und der Transparenz von entscheidender Bedeutung.
Eine Kultur des Vertrauens und der Transparenz innerhalb des Unternehmens kann auch dazu beitragen, Bedrohungen durch Schatten-KI zu vermeiden, da Mitarbeiter andernfalls „heimlich“ Schatten-KI einsetzen, ohne es den IT- und Sicherheitsteams mitzuteilen.
6. Governance
7. Rechtliches
Rechtsangelegenheiten im Bereich der künstlichen Intelligenz umfassen eine Reihe von Aktivitäten, wie z. B. die Produktgarantie für künstliche Intelligenz, die Endbenutzer-Lizenzvereinbarung (EULA) für künstliche Intelligenz, das Eigentum an Code, der mit Tools der künstlichen Intelligenz entwickelt wurde, Risiken in Bezug auf geistiges Eigentum und vertragliche Vergütungsklauseln usw. Kurz gesagt: Stellen Sie sicher, dass Ihr Rechtsteam oder Ihre Experten die verschiedenen unterstützenden rechtlichen Aktivitäten verstehen, die Ihr Unternehmen beim Einsatz generativer KI und großer Sprachmodelle durchführen sollte.
8. Regulierung
9. Verwenden oder implementieren Sie große Sprachmodelllösungen.
10. Test, Bewertung, Verifizierung und Validierung (TEVV)
11. Modellkarten und Risikokarten
Diese Karten können Elemente wie Modelldetails, Architektur, Trainingsdatenmethoden und Leistungsmetriken enthalten. Überlegungen zu verantwortungsvoller KI und Bedenken hinsichtlich Fairness und Transparenz werden ebenfalls hervorgehoben.
12RAG: Optimierung großer Sprachmodelle
13. AI Red Team
Es ist erwähnenswert, dass Unternehmen auch ein klares Verständnis der Red-Team-Dienste sowie der Systemanforderungen und -fähigkeiten externer generativer KI und großer Anbieter von Sprachmodellen haben müssen, um Richtlinienverstöße oder sogar rechtliche Probleme zu vermeiden.
Das obige ist der detaillierte Inhalt vonOWASP veröffentlicht Checkliste für Netzwerksicherheit und Governance für umfangreiche Sprachmodelle. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!