


Ab 2999 Yuan! Nubia Flip kommt in den Handel und unterstützt Schwebeaufnahmen aus mehreren Winkeln
Vorgestern veranstaltete Nubia eine neue Produkteinführungskonferenz und stellte sein erstes kleines faltbares Telefon vor: das Nubia Flip 5G. Da der Startpreis des neuen Telefons 2.999 Yuan beträgt, hat es die Aufmerksamkeit vieler Verbraucher auf sich gezogen. Am 16. April erfuhr CNMO, dass das Nubia Flip 5G offiziell zum Verkauf angeboten wurde. Das neue Telefon gibt es in drei Versionen: 8 GB + 256 GB zum Preis von 2.999 Yuan, 12 GB + 256 GB zum Preis von 3.299 Yuan und 12 GB + 512 GB zum Preis von 3.699 Yuan.
Der Nubia Flip 5G ist in drei Farben erhältlich: Milchtee, Karamell und Taro. Der Körper verwendet eine neue Wassertropfen-Aluminiumkette und Starlight AG-Glas. Die entfaltete Dicke beträgt des Körpers beträgt nur 7,0 mm. Der Bildschirm ist mit einem faltbaren 6,9-Zoll-Innenbildschirm mit einer Auflösung von 2790 × 1118 Pixeln ausgestattet, unterstützt 120 Hz High Refresh und 2160 Hz PWM-Dimmung, deckt 100 % DCI-P3-Farbraum ab und hat eine Farbtiefe von 10 Bit, wodurch das Bild entsteht zarter und eindringlicher.
In Bezug auf das Bildgebungssystem unterstützt das Nubia Flip 5G die NEOVISION Taishan AI-Bildgebung. Die Rückkamera unterstützt hochauflösende Dual-Kameras mit 16 Millionen Pixeln und unterstützt außerdem eine Vielzahl von 0 bis 180 Pixeln Durch das Öffnen und Schließen des Winkels können mehrere Aufnahmemethoden freigeschaltet werden.
In Bezug auf andere Konfigurationen ist das Nubia Flip 5G mit der mobilen Plattform Snapdragon 7 Gen1 ausgestattet; es verfügt über einen eingebauten Akku mit einer Kapazität von 4310 mAh, der schnelles Laden mit 33 W unterstützt; es unterstützt AI Smart Voice und Übersetzung.
Das obige ist der detaillierte Inhalt vonAb 2999 Yuan! Nubia Flip kommt in den Handel und unterstützt Schwebeaufnahmen aus mehreren Winkeln. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Der Befehl centOS stilldown wird heruntergefahren und die Syntax wird von [Optionen] ausgeführt [Informationen]. Zu den Optionen gehören: -h das System sofort stoppen; -P schalten Sie die Leistung nach dem Herunterfahren aus; -r neu starten; -t Wartezeit. Zeiten können als unmittelbar (jetzt), Minuten (Minuten) oder als bestimmte Zeit (HH: MM) angegeben werden. Hinzugefügten Informationen können in Systemmeldungen angezeigt werden.

Vollständige Anleitung zur Überprüfung der HDFS -Konfiguration in CentOS -Systemen In diesem Artikel wird die Konfiguration und den laufenden Status von HDFS auf CentOS -Systemen effektiv überprüft. Die folgenden Schritte helfen Ihnen dabei, das Setup und den Betrieb von HDFs vollständig zu verstehen. Überprüfen Sie die Hadoop -Umgebungsvariable: Stellen Sie zunächst sicher, dass die Hadoop -Umgebungsvariable korrekt eingestellt ist. Führen Sie im Terminal den folgenden Befehl aus, um zu überprüfen, ob Hadoop ordnungsgemäß installiert und konfiguriert ist: Hadoopsion-Check HDFS-Konfigurationsdatei: Die Kernkonfigurationsdatei von HDFS befindet sich im/etc/hadoop/conf/verzeichnis, wobei core-site.xml und hdfs-site.xml von entscheidender Bedeutung sind. verwenden

Backup- und Wiederherstellungsrichtlinie von GitLab im Rahmen von CentOS -System Um die Datensicherheit und Wiederherstellung der Daten zu gewährleisten, bietet GitLab on CentOS eine Vielzahl von Sicherungsmethoden. In diesem Artikel werden mehrere gängige Sicherungsmethoden, Konfigurationsparameter und Wiederherstellungsprozesse im Detail eingeführt, um eine vollständige GitLab -Sicherungs- und Wiederherstellungsstrategie aufzubauen. 1. Manuell Backup Verwenden Sie den GitLab-RakegitLab: Backup: Befehl erstellen, um die manuelle Sicherung auszuführen. Dieser Befehl unterstützt wichtige Informationen wie GitLab Repository, Datenbank, Benutzer, Benutzergruppen, Schlüssel und Berechtigungen. Die Standardsicherungsdatei wird im Verzeichnis/var/opt/gitlab/backups gespeichert. Sie können /etc /gitlab ändern

Die Installation von MySQL auf CentOS umfasst die folgenden Schritte: Hinzufügen der entsprechenden MySQL Yum -Quelle. Führen Sie den Befehl mySQL-server aus, um den MySQL-Server zu installieren. Verwenden Sie den Befehl mySQL_SECURE_INSTALLATION, um Sicherheitseinstellungen vorzunehmen, z. B. das Festlegen des Stammbenutzerkennworts. Passen Sie die MySQL -Konfigurationsdatei nach Bedarf an. Tune MySQL -Parameter und optimieren Sie Datenbanken für die Leistung.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Bei der Installation und Konfiguration von GitLab in einem CentOS -System ist die Auswahl der Datenbank von entscheidender Bedeutung. GitLab ist mit mehreren Datenbanken kompatibel, aber PostgreSQL und MySQL (oder MariADB) werden am häufigsten verwendet. Dieser Artikel analysiert Datenbankauswahlfaktoren und enthält detaillierte Installations- und Konfigurationsschritte. Datenbankauswahlhandbuch Bei der Auswahl einer Datenbank müssen Sie die folgenden Faktoren berücksichtigen: PostgreSQL: Die Standarddatenbank von GitLab ist leistungsstark, hat eine hohe Skalierbarkeit, unterstützt komplexe Abfragen und Transaktionsverarbeitung und ist für große Anwendungsszenarien geeignet. MySQL/Mariadb: Eine beliebte relationale Datenbank, die in Webanwendungen häufig verwendet wird, mit einer stabilen und zuverlässigen Leistung. MongoDB: NoSQL -Datenbank, spezialisiert auf

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort
