Inhaltsverzeichnis
Vorwort
Technische Schwierigkeiten
Systemsicherheit
Kleine Zusammenfassung
Heim Technologie-Peripheriegeräte KI Sprechen wir über die Kollision zwischen maschinellem Lernen und Personalmanagement?

Sprechen wir über die Kollision zwischen maschinellem Lernen und Personalmanagement?

Apr 26, 2024 am 10:25 AM
机器学习 人力资源 管理

Vorwort

In den letzten Jahren wurden im Bereich des maschinellen Lernens viele große Durchbrüche erzielt, und auch auf der Technologie der künstlichen Intelligenz basierende Personalmanagement-Dienstleistungsprodukte haben einen riesigen und dynamischen Markt. Immer mehr Unternehmen und Regierungsbehörden denken nach und nach darüber nach, maschinelle Lerntechnologie auf das Personalmanagement anzuwenden, mithilfe neuronaler Netze effektive Entscheidungen zu treffen und die Ergebnisse des Personalmanagements genau vorherzusagen.

In diesem Artikel werden vier Aspekte der Anwendung von maschinellem Lernen in der Personalmanagementforschung vorgestellt, darunter hauptsächlich technische Schwierigkeiten, eine Einführung in Entscheidungssysteme im Personalmanagement, Systemdesignmethoden und Systemsicherheit. Wir hoffen, dass die Leser ein vorläufiges Verständnis davon erhalten verwandte Forschung.

Technische Schwierigkeiten

Im Jahr 2019 führten CEOs von 20 großen Unternehmen in den USA entsprechende Seminare durch. Die Ergebnisse zeigten, dass die Anwendung der maschinellen Lerntechnologie im Bereich des Personalmanagements vor einzigartigen Herausforderungen steht. Die Entwicklung wertvoller HRM-Entscheidungssysteme birgt nicht nur technische Herausforderungen, sondern auch Hindernisse bei der Übertragung der inhärenten Komplexität von HRM-Ergebnissen sowie schwierig zu berücksichtigende Daten, ethische und rechtliche Einschränkungen und Bedenken hinsichtlich der Auswahl betroffener Mitarbeiter oder anderer Interessengruppen Prozess, den einige für umstritten halten. Bei Entscheidungen des Personalmanagements müssen Auswahlverfahren vermieden werden, die rechtlich anfechtbar sind oder von Mitarbeitern oder anderen Interessengruppen als kontrovers angesehen werden.

Die Zusammenfassung umfasst die folgenden Aspekte:

  • Wie man eine Reihe von Forschungs- und Entwicklungsprojekten etabliert und überwacht, um die Anwendung von maschinellem Lernen im Personalmanagement zu erforschen;
  • Wie man NLP-basierte Entscheidungsunterstützungssysteme effektiv entwickelt;
  • Wie Sie Entscheidungsunterstützungssysteme testen, um sicherzustellen, dass sie für die Entscheidungsfindung sicher sind;
  • Wie Sie Systeme erfolgreich in akzeptable Anwendungen umwandeln, sobald sie entwickelt und getestet wurden.
Einführung in das Entscheidungsfindungssystem für das Personalmanagement

Die Implementierung des Entscheidungsfindungssystems für das Personalmanagement steht vor den folgenden Herausforderungen:

    Sollte das System die Entscheidungsfindung automatisieren, Eingaben für menschliche Entscheidungsträger bereitstellen oder interagieren? mit dem Entscheidungsprozess auf andere Weise?
  • Welche Eingaben benötigen menschliche Entscheidungsträger und wie effektiv sind mögliche maschinelle Lernsysteme bei der Bereitstellung dieser Eingaben?
  • Welche Risiken bergen verschiedene Arten der Entscheidungsunterstützung angesichts des derzeit in verschiedenen Kandidatensystemen verfügbaren Funktionsumfangs?
Dieses Framework demonstriert die Prinzipien eines maschinellen Lernsystems zur Konzeptualisierung von Design und Personalmanagement. Die Idee hinter dem Framework ist, dass das Systemdesign untrennbar mit den Zielen mit der höchsten Priorität des Systems verbunden ist. HRM-Ziele helfen Designern dabei, aus den vielen Möglichkeiten auszuwählen, wie maschinelles Lernen den HRM-Entscheidungsprozess unterstützen kann. Das Design der Implementierung hat wiederum Einfluss darauf, wie das System bewertet wird. Beispielsweise können Systeme, die die Entscheidungsfindung automatisieren, auf der Grundlage ihrer Genauigkeit oder anderer wichtiger Kriterien bewertet werden, und Systeme, die Eingaben bereitstellen, müssen auf der Grundlage der Genauigkeit der Eingaben und ihrer Auswirkung auf das gesamte Entscheidungsergebnis beurteilt werden. Wenn das System die Sicherheitsstandards nicht erfüllt, muss der Implementierungsentwurf geändert werden, bis der Designer in der Lage ist, ein System zu erhalten, das für die Ziele des Personalmanagements wertvoll ist und in der Lage ist, Sicherheitsparameter zu erfüllen.

Sprechen wir über die Kollision zwischen maschinellem Lernen und Personalmanagement?Figure Machine Learning System Framework

System Design Methodology

In den frühen Phasen der Entwicklung gibt es viele Designoptionen, um auf maschinellem Lernen basierende Eingaben in die Entscheidungsfindung zu integrieren. Designs variieren hinsichtlich des Zeitpunkts (z. B. bevor oder nachdem Menschen Entscheidungen treffen) und des Ausmaßes des Einflusses (z. B. Empfehlung einer Option oder Lenkung der Aufmerksamkeit auf wichtige Merkmale). Hier werden fünf wichtige Designimplementierungen von Entscheidungsfindungssystemen für maschinelles Lernen hervorgehoben:

Zur Entscheidungszeit bewerten Systeme für maschinelles Lernen HR-Management-Datensätze und treffen Entscheidungen automatisch, ohne dass menschliche Entscheidungsträger beteiligt sind.

2. Empfohlen. Maschinelle Lernsysteme stellen menschlichen Entscheidungsträgern Empfehlungen als zusätzlichen Input zur Verfügung.

3. Punkte. Maschinelle Lernsysteme geben Ergebnisse als zusätzlichen Input an den Menschen weiter.

4. Zusammenfassung. Maschinelle Lernsysteme fassen automatisch für menschliche Entscheidungsträger zusammen.

5. Prüfung. Maschinelle Lernsysteme kennzeichnen Anomalien zur Überprüfung durch menschliche Entscheidungsträger im Rahmen des Prüfungsprozesses.

Der Designprozess beginnt mit der Bestimmung der vorrangigen Ziele des maschinellen Lernsystems. Unterschiedliche Zielkombinationen erfordern unterschiedliche Designimplementierungen, wie in der Tabelle gezeigt.

Sprechen wir über die Kollision zwischen maschinellem Lernen und Personalmanagement?Bild

Diese Ziele zeigen auch mögliche Messgrößen für die Wirksamkeit des Bewertungsprozesses auf. Wenn das Ziel beispielsweise darin besteht, die Arbeitsbelastung zu reduzieren, sollte das System die Anzahl der menschlichen Entscheidungsträger oder die Zeit, die sie mit der Erfassung von Bewertungen verbringen, reduzieren. Wenn das Ziel darin besteht, die menschliche Entscheidungsfindung zu verbessern, sollte das System dazu beitragen, die Qualität der Entscheidungen zu verbessern indem Sie sie mit Beweisen messen. Tragen Sie besser zu wichtigen HR-Management-Ergebnissen bei.

Maschinelle Lernsysteme, die narrative Aufzeichnungen automatisch zusammenfassen, können als Modell für die Entscheidungsunterstützung dienen. Die meisten HR-Datensätze einer Person sind in zwei Arten von Freitext und Personenattributen unterteilt. Freiformtext wie Aufgabenlisten, Beschreibungen von Verantwortlichkeiten und Zusammenfassungen wichtiger Erfolge. Bei Personalattributen handelt es sich um vorab quantifizierte, interpretierbare, für das Management nützliche Daten, wie z. B. jahrelange Erfahrung, Rangfolge oder Beförderungstestergebnisse. Während die letztere Art von Informationen einfacher zu verarbeiten und in Modellen oder Visualisierungen zu verwenden ist, wird die erstere Art von Informationen auch benötigt, um fundierte Entscheidungen im Personalmanagement zu treffen.

Managemententscheidungen erfordern eine sorgfältige Überprüfung der Aufzeichnungen und einen manuellen Überprüfungs- oder Bewertungsprozess durch erfahrenes Personal. Von den verschiedenen Entwurfsimplementierungen, die zur Unterstützung der manuellen Überprüfung in Betracht gezogen werden, ist „Zusammenfassung“ die vielseitigste. Dies ist das einzige Design, das mäßig oder sehr gut mit allen Zielen des Personalmanagements übereinstimmt. Automatisierte Zusammenfassungen sind nützlich, um Feedback zu geben, die Transparenz zu erhöhen und die Genauigkeit der menschlichen Entscheidungsfindung zu verbessern, und sie sind zumindest einigermaßen nützlich, um den manuellen Arbeitsaufwand zu standardisieren und zu reduzieren. Gleichzeitig behält die summarische Implementierung ein hohes Maß an manueller Kontrolle über den Entscheidungsprozess bei, sodass es wahrscheinlicher ist als bei anderen Designs, dass sie Sicherheitsstandards erfüllt. Tatsächlich hebt die Zusammenfassung die Elemente des Textes hervor, die das System für wichtig hält, und stellt daher eine Erläuterung der Entscheidungen des Systems dar. Daher können Zusammenfassungen als nützliche Hilfe dienen, um Managern dabei zu helfen, Modellausgaben in anderen Entwurfsimplementierungen zu verstehen.

Systemsicherheit

Entscheidungen im Personalmanagement sind eine entscheidende Kraft, die sich auf die Zukunft des Unternehmens auswirkt. Daher muss bei wesentlichen Änderungen im Entscheidungsprozess der Grundsatz „Zuerst keinen Schaden anrichten“ befolgt werden. Da die Investitionen in maschinelles Lernen steigen, zielen zahlreiche Forschungs- und Strategiedokumente darauf ab, normative Leitlinien für den verantwortungsvollen und ethischen Einsatz von maschinellem Lernen (und künstlicher Intelligenz im weiteren Sinne) bereitzustellen.

So gelten beispielsweise bestehende Regeln und Rahmenwerke zum Schutz der Privatsphäre der Mitglieder weiterhin für alle Entwicklungsprojekte. Während der Entwicklung und Bereitstellung gibt es drei Prinzipien, die besonders für Testsysteme relevant sind, die Genauigkeit, Fairness und Interpretierbarkeit von maschinellen Lernsystemen erfordern:

Genauigkeit bedeutet, dass ein maschinelles Lernsystem oder das darin enthaltene Modell das Interesse mit einem hohen Wert korrekt vorhersagt Wahrscheinlichkeit das Ergebnis von.

Fairness bedeutet, dass das maschinelle Lernsystem Untergruppen gleich behandelt.

Erklärbarkeit bedeutet, dass Menschen die Faktoren und Beziehungen verstehen können, die zu den Ergebnissen eines maschinellen Lernsystems führen.

Diese Sicherheitsstandards stehen manchmal im Widerspruch zueinander. Um die Fairness zu erhöhen, können Designer dem System Einschränkungen auferlegen, die seine Genauigkeit oder Interpretierbarkeit verringern. Um die Interpretierbarkeit zu verbessern, verwenden Systementwickler möglicherweise besser interpretierbare (aber weniger flexible) Modellierungsmethoden, was sich auf Genauigkeit und Fairness auswirken kann. Beim Testen müssen Genauigkeit, Fairness und Interpretierbarkeit gegeneinander abgewogen werden, um zu einem Design zu gelangen, das den Zielen des Personalmanagements sowie rechtlichen und ethischen Einschränkungen entspricht.

In Bezug auf Fairness ist es wichtig zu beachten, dass es keine einheitliche Definition von Fairness gibt und es oft unmöglich ist, konkurrierende Arten von Fairness zu erfüllen. Daher müssen Agenturen eine Definition wählen, um mit dem Testen voranzukommen. Dabei wird zwischen prozeduraler Fairness, die sicherstellt, dass ein HR-Management-Prozess oder Algorithmus Mitglieder unterschiedlicher Untergruppen gleich behandelt, und Outcome-Fairness, die prüft, ob ein Modell- oder Prozessergebnis verzerrt ist, unterschieden.

Schließlich ist die Erklärbarkeit von entscheidender Bedeutung für das Erreichen von HRM-Zielen, da Menschen das System möglicherweise ignorieren oder missbrauchen, wenn sie nicht verstehen, wie es zu einer besseren Entscheidungsfindung beiträgt. Darüber hinaus ist die Definition der Erklärbarkeit untrennbar mit der Zielgruppe verbunden, da unterschiedliche Benutzertypen unterschiedliche Erklärungsebenen erfordern. Designer können die Verwendung von inhärent interpretierbaren Modellen in Betracht ziehen, um die Interpretierbarkeit zu verbessern, und sie können auch Human-in-the-Loop-Tests durchführen, um zu beurteilen, wie gut Menschen die Funktionalität des Systems verstehen.

Kleine Zusammenfassung

Dieser Artikel stellt hauptsächlich kurz die Forschung zum maschinellen Lernen im Bereich Personalmanagement unter vier Aspekten vor: technische Schwierigkeiten, Einführung in Entscheidungssysteme im Personalmanagement, Systemdesignmethoden und Systemsicherheit. Wir hoffen, dass es für Leser hilfreich sein kann, die sich ein erstes Verständnis dieser Forschung verschaffen möchten.

Referenz: „Nutzung maschinellen Lernens zur Verbesserung des Personalmanagements“

Das obige ist der detaillierte Inhalt vonSprechen wir über die Kollision zwischen maschinellem Lernen und Personalmanagement?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Beste grafische Einstellungen
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. So reparieren Sie Audio, wenn Sie niemanden hören können
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: Wie man alles in Myrise freischaltet
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen In diesem Artikel erfahren Sie mehr über SHAP: Modellerklärung für maschinelles Lernen Jun 01, 2024 am 10:58 AM

In den Bereichen maschinelles Lernen und Datenwissenschaft stand die Interpretierbarkeit von Modellen schon immer im Fokus von Forschern und Praktikern. Mit der weit verbreiteten Anwendung komplexer Modelle wie Deep Learning und Ensemble-Methoden ist das Verständnis des Entscheidungsprozesses des Modells besonders wichtig geworden. Explainable AI|XAI trägt dazu bei, Vertrauen in maschinelle Lernmodelle aufzubauen, indem es die Transparenz des Modells erhöht. Eine Verbesserung der Modelltransparenz kann durch Methoden wie den weit verbreiteten Einsatz mehrerer komplexer Modelle sowie der Entscheidungsprozesse zur Erläuterung der Modelle erreicht werden. Zu diesen Methoden gehören die Analyse der Merkmalsbedeutung, die Schätzung des Modellvorhersageintervalls, lokale Interpretierbarkeitsalgorithmen usw. Die Merkmalswichtigkeitsanalyse kann den Entscheidungsprozess des Modells erklären, indem sie den Grad des Einflusses des Modells auf die Eingabemerkmale bewertet. Schätzung des Modellvorhersageintervalls

Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Transparent! Eine ausführliche Analyse der Prinzipien der wichtigsten Modelle des maschinellen Lernens! Apr 12, 2024 pm 05:55 PM

Laienhaft ausgedrückt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Eingabedaten einer vorhergesagten Ausgabe zuordnet. Genauer gesagt ist ein Modell für maschinelles Lernen eine mathematische Funktion, die Modellparameter anpasst, indem sie aus Trainingsdaten lernt, um den Fehler zwischen der vorhergesagten Ausgabe und der wahren Bezeichnung zu minimieren. Beim maschinellen Lernen gibt es viele Modelle, z. B. logistische Regressionsmodelle, Entscheidungsbaummodelle, Support-Vektor-Maschinenmodelle usw. Jedes Modell verfügt über seine anwendbaren Datentypen und Problemtypen. Gleichzeitig gibt es viele Gemeinsamkeiten zwischen verschiedenen Modellen oder es gibt einen verborgenen Weg für die Modellentwicklung. Am Beispiel des konnektionistischen Perzeptrons können wir es durch Erhöhen der Anzahl verborgener Schichten des Perzeptrons in ein tiefes neuronales Netzwerk umwandeln. Wenn dem Perzeptron eine Kernelfunktion hinzugefügt wird, kann es in eine SVM umgewandelt werden. Dieses hier

Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Identifizieren Sie Über- und Unteranpassung anhand von Lernkurven Apr 29, 2024 pm 06:50 PM

In diesem Artikel wird vorgestellt, wie Überanpassung und Unteranpassung in Modellen für maschinelles Lernen mithilfe von Lernkurven effektiv identifiziert werden können. Unteranpassung und Überanpassung 1. Überanpassung Wenn ein Modell mit den Daten übertrainiert ist, sodass es daraus Rauschen lernt, spricht man von einer Überanpassung des Modells. Ein überangepasstes Modell lernt jedes Beispiel so perfekt, dass es ein unsichtbares/neues Beispiel falsch klassifiziert. Für ein überangepasstes Modell erhalten wir einen perfekten/nahezu perfekten Trainingssatzwert und einen schrecklichen Validierungssatz-/Testwert. Leicht geändert: „Ursache der Überanpassung: Verwenden Sie ein komplexes Modell, um ein einfaches Problem zu lösen und Rauschen aus den Daten zu extrahieren. Weil ein kleiner Datensatz als Trainingssatz möglicherweise nicht die korrekte Darstellung aller Daten darstellt. 2. Unteranpassung Heru.“

Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Die Entwicklung der künstlichen Intelligenz in der Weltraumforschung und der Siedlungstechnik Apr 29, 2024 pm 03:25 PM

In den 1950er Jahren wurde die künstliche Intelligenz (KI) geboren. Damals entdeckten Forscher, dass Maschinen menschenähnliche Aufgaben wie das Denken ausführen können. Später, in den 1960er Jahren, finanzierte das US-Verteidigungsministerium künstliche Intelligenz und richtete Labore für die weitere Entwicklung ein. Forscher finden Anwendungen für künstliche Intelligenz in vielen Bereichen, etwa bei der Erforschung des Weltraums und beim Überleben in extremen Umgebungen. Unter Weltraumforschung versteht man die Erforschung des Universums, das das gesamte Universum außerhalb der Erde umfasst. Der Weltraum wird als extreme Umgebung eingestuft, da sich seine Bedingungen von denen auf der Erde unterscheiden. Um im Weltraum zu überleben, müssen viele Faktoren berücksichtigt und Vorkehrungen getroffen werden. Wissenschaftler und Forscher glauben, dass die Erforschung des Weltraums und das Verständnis des aktuellen Zustands aller Dinge dazu beitragen können, die Funktionsweise des Universums zu verstehen und sich auf mögliche Umweltkrisen vorzubereiten

Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Implementierung von Algorithmen für maschinelles Lernen in C++: Häufige Herausforderungen und Lösungen Jun 03, 2024 pm 01:25 PM

Zu den häufigsten Herausforderungen, mit denen Algorithmen für maschinelles Lernen in C++ konfrontiert sind, gehören Speicherverwaltung, Multithreading, Leistungsoptimierung und Wartbarkeit. Zu den Lösungen gehören die Verwendung intelligenter Zeiger, moderner Threading-Bibliotheken, SIMD-Anweisungen und Bibliotheken von Drittanbietern sowie die Einhaltung von Codierungsstilrichtlinien und die Verwendung von Automatisierungstools. Praktische Fälle zeigen, wie man die Eigen-Bibliothek nutzt, um lineare Regressionsalgorithmen zu implementieren, den Speicher effektiv zu verwalten und leistungsstarke Matrixoperationen zu nutzen.

Erklärbare KI: Erklären komplexer KI/ML-Modelle Erklärbare KI: Erklären komplexer KI/ML-Modelle Jun 03, 2024 pm 10:08 PM

Übersetzer |. Rezensiert von Li Rui |. Chonglou Modelle für künstliche Intelligenz (KI) und maschinelles Lernen (ML) werden heutzutage immer komplexer, und die von diesen Modellen erzeugten Ergebnisse sind eine Blackbox, die den Stakeholdern nicht erklärt werden kann. Explainable AI (XAI) zielt darauf ab, dieses Problem zu lösen, indem es Stakeholdern ermöglicht, die Funktionsweise dieser Modelle zu verstehen, sicherzustellen, dass sie verstehen, wie diese Modelle tatsächlich Entscheidungen treffen, und Transparenz in KI-Systemen, Vertrauen und Verantwortlichkeit zur Lösung dieses Problems gewährleistet. In diesem Artikel werden verschiedene Techniken der erklärbaren künstlichen Intelligenz (XAI) untersucht, um ihre zugrunde liegenden Prinzipien zu veranschaulichen. Mehrere Gründe, warum erklärbare KI von entscheidender Bedeutung ist. Vertrauen und Transparenz: Damit KI-Systeme allgemein akzeptiert und vertrauenswürdig sind, müssen Benutzer verstehen, wie Entscheidungen getroffen werden

Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten Ist Flash Attention stabil? Meta und Harvard stellten fest, dass die Gewichtsabweichungen ihrer Modelle um Größenordnungen schwankten May 30, 2024 pm 01:24 PM

MetaFAIR hat sich mit Harvard zusammengetan, um einen neuen Forschungsrahmen zur Optimierung der Datenverzerrung bereitzustellen, die bei der Durchführung groß angelegten maschinellen Lernens entsteht. Es ist bekannt, dass das Training großer Sprachmodelle oft Monate dauert und Hunderte oder sogar Tausende von GPUs verwendet. Am Beispiel des Modells LLaMA270B erfordert das Training insgesamt 1.720.320 GPU-Stunden. Das Training großer Modelle stellt aufgrund des Umfangs und der Komplexität dieser Arbeitsbelastungen einzigartige systemische Herausforderungen dar. In letzter Zeit haben viele Institutionen über Instabilität im Trainingsprozess beim Training generativer SOTA-KI-Modelle berichtet. Diese treten normalerweise in Form von Verlustspitzen auf. Beim PaLM-Modell von Google kam es beispielsweise während des Trainingsprozesses zu Instabilitäten. Numerische Voreingenommenheit ist die Hauptursache für diese Trainingsungenauigkeit.

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

See all articles