Inhaltsverzeichnis
Datenaggregation und -bereinigung: Der erste Schritt
Der Einsatz natürlicher Sprachverarbeitung (NLP)
Predictive Analytics zur Risikovorhersage
Echtzeitüberwachung und -warnungen
Erweitern Sie traditionelle Risikomodelle
Visualisieren Sie zum besseren Verständnis
Kontinuierliches Lernen und Anpassung
Machen Sie sich KI-gesteuerte Risikomanagementplattformen zunutze
Kollaborative KI: Mensch + Maschine
Bleiben Sie auf dem Laufenden und informieren Sie sich
Ergänzung zur herkömmlichen Risikoerkennung: kein Ersatz
Heim Technologie-Peripheriegeräte KI Zehn Methoden zur KI-Risikoerkennung

Zehn Methoden zur KI-Risikoerkennung

Apr 26, 2024 pm 05:25 PM
人工智能 网络安全 风险

Über Chatbots oder personalisierte Empfehlungen hinaus gewinnt die leistungsstarke Fähigkeit künstlicher Intelligenz, Risiken vorherzusagen und zu beseitigen, in Unternehmen immer mehr an Bedeutung. Da sich riesige Datenmengen vermehren und die Vorschriften strenger werden, geraten herkömmliche Risikobewertungstools zunehmend unter Druck. Die Technologie der künstlichen Intelligenz kann die Erfassung großer Datenmengen schnell analysieren und überwachen, wodurch Risikobewertungstools unter Komprimierung verbessert werden können. Durch den Einsatz von Technologien wie maschinellem Lernen und Deep Learning kann KI potenzielle Risiken erkennen, vorhersagen und zeitnah Empfehlungen geben. Menschen

In diesem Zusammenhang kann die Nutzung der Risikomanagementfähigkeiten künstlicher Intelligenz die Einhaltung sich ändernder Vorschriften sicherstellen und proaktiv auf unvorhergesehene Bedrohungen reagieren. Der Einsatz von KI zur Bewältigung der Komplexität des Risikomanagements mag alarmierend erscheinen, aber für diejenigen, die dem digitalen Wettlauf immer einen Schritt voraus sein möchten, ist die Integration von KI in ihre Risikostrategien keine Frage des „Was wäre wenn“, sondern der Frage des „Wann“.

Zehn Methoden zur KI-Risikoerkennung

Datenaggregation und -bereinigung: Der erste Schritt

Die Wirksamkeit von KI bei der Risikoerkennung beginnt mit der Qualität und Quantität der Daten, auf die sie Zugriff hat. Beginnen Sie damit, Daten aus verschiedenen Quellen zu aggregieren, um sicherzustellen, dass sie bereinigt und frei von Anomalien sind, damit die KI sie verwenden kann. Erwägen Sie außerdem die Implementierung eines Datenauditsystems. Regelmäßig geplante Audits können dabei helfen, Inkonsistenzen oder Redundanzen in den Daten zu erkennen und sicherzustellen, dass die KI mit den genauesten und aktuellsten Informationen arbeitet.

Der Einsatz natürlicher Sprachverarbeitung (NLP)

ermöglicht es, mehrere Risiken in den Worten von Dokumenten, E-Mails und Berichten zu verbergen. Algorithmen zur Verarbeitung natürlicher Sprache (Natural Language Processing, NLP) analysieren, verstehen und leiten Bedeutungen aus menschlicher Sprache ab. Dadurch können KI-Systeme potenzielle Risiken in Textdaten identifizieren, die menschliche Klassifizierungsanalysten möglicherweise übersehen.

Predictive Analytics zur Risikovorhersage

Künstliche Intelligenz kann zukünftige Risiken vorhersagen, indem sie historische Daten untersucht und Muster im großen Maßstab erkennt. Eine kontinuierliche Validierung und Neukalibrierung dieser Modelle mit neuen Daten ist von entscheidender Bedeutung. Wenn sich das Geschäftsumfeld und externe Faktoren ändern, sorgt die Sicherstellung, dass Modellaktualisierungen dafür sorgen, dass die Prognosen korrekt und relevant bleiben.

Echtzeitüberwachung und -warnungen

Mit künstlicher Intelligenz wird die Risikoüberwachung in Echtzeit Realität. Sie können Ihr System so einrichten, dass es kontinuierlich verschiedene Datenquellen nach potenziellen Risiken durchsucht und Stakeholder benachrichtigt, wenn potenzielle Risiken entdeckt werden. Diese Schnelligkeit und Aktualität gewährleistet schnelle Reaktionszeiten und kann möglicherweise schädliche Folgen abmildern oder vermeiden.

Erweitern Sie traditionelle Risikomodelle

Künstliche Intelligenz kann herkömmliche Risikobewertungsmethoden durch die Einführung neuer Variablen und datengesteuerter Erkenntnisse ergänzen. Durch die Integration KI-gesteuerter Analysen in bestehende Risikomodelle können Unternehmen ein umfassenderes und dynamischeres Verständnis ihres Risikoprofils erlangen.

Visualisieren Sie zum besseren Verständnis

Daten sind nach der Visualisierung leichter zu verstehen und zu verarbeiten. KI-gesteuerte Tools können intuitive grafische Darstellungen von Risikodaten erstellen, sodass Stakeholder potenzielle Nuancen und Schweregrade schnell erkennen und die Kommunikation zwischen Stakeholdern und IT-Teams verbessern können.

Kontinuierliches Lernen und Anpassung

Tools und Technologien spielen im Risikomanagement unterschiedliche Rollen, und KI-Systeme können kontinuierlich und intuitiv lernen. Durch die kontinuierliche Aufnahme neuer Daten passt und verfeinert die KI ihr Risikoverständnis und stellt so sicher, dass ihre Risikoerkennungsfähigkeiten scharf und relevant bleiben.

Machen Sie sich KI-gesteuerte Risikomanagementplattformen zunutze

Es gibt mehrere Plattformen, die die Leistungsfähigkeit der KI nutzen, um Risiken aufzudecken und KI zu nutzen, um Risiken zu identifizieren, zu priorisieren und sogar darauf zu reagieren. Die Einführung dieser Plattformen kann Ihre Risikomanagementstrategie erheblich verbessern. Führen Sie außerdem regelmäßige Schulungen für Ihr Team durch, um dessen Potenzial zu maximieren. Wenn Sie sie mit den Funktionen und Best Practices der Plattform vertraut machen, können Sie eine konsistentere und effektivere Reaktion auf identifizierte Risiken gewährleisten.

Kollaborative KI: Mensch + Maschine

Die besten Ergebnisse bei der Risikoerkennung entstehen oft durch eine Kombination aus menschlicher Intuition und KI-Rechenleistung. Durch die Förderung der Zusammenarbeit zwischen KI-Tools und menschlichen Experten kann sichergestellt werden, dass identifizierte Risiken sowohl datengesteuert als auch kontextbezogen sind.

Bleiben Sie auf dem Laufenden und informieren Sie sich

Die Welt der künstlichen Intelligenz entwickelt sich rasant weiter. Um sicherzustellen, dass Ihre Risikoerkennungsstrategie effektiv bleibt, bleiben Sie über die neuesten Fortschritte in der künstlichen Intelligenz informiert. Regelmäßige Schulungen Ihres Teams und die Aktualisierung Ihrer KI-Tools können einen großen Einfluss auf die Ergebnisse Ihres Risikomanagements haben.

Ergänzung zur herkömmlichen Risikoerkennung: kein Ersatz

Künstliche Intelligenz bietet einen transformativen Ansatz zur Risikoerkennung. Dabei geht es nicht nur darum, traditionelle Methoden zu ersetzen, sondern sie zu verbessern und zu verfeinern. Da sich die Komplexität und das Ausmaß der Risiken ständig weiterentwickeln, wird die Integration von KI-gesteuerten Strategien in das traditionelle Risikomanagement unverzichtbar, und KI wird ihren Wert unter Beweis stellen, wenn es darum geht, potenzielle Bedrohungen in Wachstums- und Weiterentwicklungschancen umzuwandeln.

Das obige ist der detaillierte Inhalt vonZehn Methoden zur KI-Risikoerkennung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

R.E.P.O. Energiekristalle erklärten und was sie tun (gelber Kristall)
2 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Repo: Wie man Teamkollegen wiederbelebt
4 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Abenteuer: Wie man riesige Samen bekommt
3 Wochen vor By 尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Bytedance Cutting führt SVIP-Supermitgliedschaft ein: 499 Yuan für ein fortlaufendes Jahresabonnement, das eine Vielzahl von KI-Funktionen bietet Jun 28, 2024 am 03:51 AM

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grundsätzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente Übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich beträgt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement beträgt 59 Yuan pro Monat und das fortlaufende Jahresabonnement beträgt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erklärte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Kontexterweiterter KI-Codierungsassistent mit Rag und Sem-Rag Jun 10, 2024 am 11:08 AM

Verbessern Sie die Produktivität, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Gedächtnis in KI-Codierungsassistenten integrieren. Übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, können sie oft nicht die relevantesten und korrektesten Codevorschläge liefern, da sie auf einem allgemeinen Verständnis der Softwaresprache und den gängigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur Lösung der von ihnen zu lösenden Probleme, entspricht jedoch häufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen häufig Vorschläge, die geändert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Sieben coole technische Interviewfragen für GenAI und LLM Sieben coole technische Interviewfragen für GenAI und LLM Jun 07, 2024 am 10:06 AM

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen Fähigkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsfähig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus großen Datenmengen ist LLM in der Lage, Text zu generieren

Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Kann LLM durch Feinabstimmung wirklich neue Dinge lernen: Die Einführung neuen Wissens kann dazu führen, dass das Modell mehr Halluzinationen hervorruft Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort große Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung „verdinglicht“. Am Ende des Vortrainings hört das Modell tatsächlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren können. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Domänen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zusätzliches Wissen aus der realen Welt trifft und dieses integriert

Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Um ein neues wissenschaftliches und komplexes Frage-Antwort-Benchmark- und Bewertungssystem für große Modelle bereitzustellen, haben UNSW, Argonne, die University of Chicago und andere Institutionen gemeinsam das SciQAG-Framework eingeführt Jul 25, 2024 am 06:42 AM

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der Förderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datensätze können nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die Fähigkeiten großer Sprachmodelle (LLMs) bewerten, insbesondere die Fähigkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datensätze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datensätze immer noch einige Mängel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schränken jedoch den Antwortauswahlbereich des Modells ein und können die Fähigkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollständig testen. Im Gegensatz dazu offene Fragen und Antworten

SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen SOTA Performance, eine multimodale KI-Methode zur Vorhersage der Protein-Ligand-Affinität in Xiamen, kombiniert erstmals molekulare Oberflächeninformationen Jul 17, 2024 pm 06:37 PM

Herausgeber |. KX Im Bereich der Arzneimittelforschung und -entwicklung ist die genaue und effektive Vorhersage der Bindungsaffinität von Proteinen und Liganden für das Arzneimittelscreening und die Arzneimitteloptimierung von entscheidender Bedeutung. Aktuelle Studien berücksichtigen jedoch nicht die wichtige Rolle molekularer Oberflächeninformationen bei Protein-Ligand-Wechselwirkungen. Auf dieser Grundlage schlugen Forscher der Universität Xiamen ein neuartiges Framework zur multimodalen Merkmalsextraktion (MFE) vor, das erstmals Informationen über Proteinoberfläche, 3D-Struktur und -Sequenz kombiniert und einen Kreuzaufmerksamkeitsmechanismus verwendet, um verschiedene Modalitäten zu vergleichen Ausrichtung. Experimentelle Ergebnisse zeigen, dass diese Methode bei der Vorhersage von Protein-Ligand-Bindungsaffinitäten Spitzenleistungen erbringt. Darüber hinaus belegen Ablationsstudien die Wirksamkeit und Notwendigkeit der Proteinoberflächeninformation und der multimodalen Merkmalsausrichtung innerhalb dieses Rahmens. Verwandte Forschungen beginnen mit „S

Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Fünf Schulen des maschinellen Lernens, die Sie nicht kennen Jun 05, 2024 pm 08:51 PM

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die Möglichkeit gibt, aus Daten zu lernen und ihre Fähigkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es verändert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als „Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolutionäre Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Eine neue Ära der VSCode-Frontend-Entwicklung: 12 sehr empfehlenswerte KI-Code-Assistenten Eine neue Ära der VSCode-Frontend-Entwicklung: 12 sehr empfehlenswerte KI-Code-Assistenten Jun 11, 2024 pm 07:47 PM

In der Welt der Front-End-Entwicklung ist VSCode mit seinen leistungsstarken Funktionen und seinem umfangreichen Plug-in-Ökosystem für unzählige Entwickler zum Werkzeug der Wahl geworden. In den letzten Jahren sind mit der rasanten Entwicklung der Technologie der künstlichen Intelligenz KI-Code-Assistenten auf VSCode entstanden, die die Codierungseffizienz der Entwickler erheblich verbessert haben. KI-Code-Assistenten auf VSCode sind wie Pilze nach einem Regen aus dem Boden geschossen und haben die Codierungseffizienz der Entwickler erheblich verbessert. Es nutzt Technologie der künstlichen Intelligenz, um Code intelligent zu analysieren und eine präzise Code-Vervollständigung, automatische Fehlerkorrektur, Grammatikprüfung und andere Funktionen bereitzustellen, wodurch Entwicklerfehler und mühsame manuelle Arbeit während des Codierungsprozesses erheblich reduziert werden. Heute werde ich 12 KI-Code-Assistenten für die Frontend-Entwicklung von VSCode empfehlen, die Sie bei Ihrer Programmierreise unterstützen.

See all articles