


Synchronisations- und Sperrmechanismus von Schnittstellen und abstrakten Klassen in Java
Synchronisationsmechanismus von Schnittstellen und abstrakten Klassen in Java: Schnittstellen und abstrakte Klassen können nicht instanziiert werden und können keine eigenen Sperren haben. Es können synchronisierte Methoden deklariert werden, die gewöhnlichen Methoden ähneln, jedoch mithilfe des synchronisierten Schlüsselworts geändert werden. Wenn eine synchronisierte Methode aufgerufen wird, erhält der Thread die Sperre der Methode. Andere Threads, die gleichzeitig dieselbe Methode aufrufen, werden blockiert, bis die Sperre aufgehoben wird. Praktischer Fall: Die gemeinsam genutzte Ressourcenklasse SharedResource verfügt über zwei Synchronisationsmethoden. Aufgrund der Methodensynchronisation muss der Thread jedoch auf den Zugriff auf die Sperre warten, bevor er den Wert ändert, um die Richtigkeit des Werts sicherzustellen und Parallelität zu vermeiden Probleme.
Synchronisierungs- und Sperrmechanismus von Schnittstellen und abstrakten Klassen in Java
Einführung
Synchronisierung ist ein Mechanismus, um den sicheren Zugriff mehrerer Threads auf gemeinsam genutzte Ressourcen zu gewährleisten. In Java können Sie Sperren verwenden, um eine Synchronisierung zu erreichen. Eine Sperre ist ein Objekt, das, wenn ein Thread eine Sperre anfordert, den Zugriff anderer Threads auf die Ressource blockiert, bis die Sperre aufgehoben wird.
Synchronisation in Schnittstellen und abstrakten Klassen
Schnittstellen und abstrakte Klassen können nicht instanziiert werden, daher können sie keine eigenen Sperren haben. Sie können jedoch synchronisierte Methoden deklarieren, die gewöhnlichen Methoden sehr ähnlich sind, aber mit dem Schlüsselwort synchronized
modifiziert werden. synchronized
关键字修改。
public interface SynchronizedInterface { synchronized void synchronizedMethod(); } public abstract class SynchronizedAbstractClass { synchronized void synchronizedMethod(); }
当某个线程调用同步方法时,它将获取该方法的锁。如果另一个线程尝试同时调用同一个方法,它将被阻塞,直到该锁被释放。
实战案例
考虑一个共享资源类 SharedResource
,它具有两个同步方法:increment
和 decrement
。
public class SharedResource { private int value = 0; public synchronized void increment() { value++; } public synchronized void decrement() { value--; } }
现在,我们有两个线程 Thread1
和 Thread2
,它们并发地访问 SharedResource
。
public class Thread1 implements Runnable { private SharedResource sharedResource; @Override public void run() { for (int i = 0; i < 100000; i++) { sharedResource.increment(); } } } public class Thread2 implements Runnable { private SharedResource sharedResource; @Override public void run() { for (int i = 0; i < 100000; i++) { sharedResource.decrement(); } } } public class Main { public static void main(String[] args) { SharedResource sharedResource = new SharedResource(); Thread1 thread1 = new Thread1(); Thread2 thread2 = new Thread2(); thread1.start(); thread2.start(); try { thread1.join(); thread2.join(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("Final value: " + sharedResource.value); } }
在这个案例中,两个线程并行地调用 increment
和 decrement
方法,但由于这些方法是同步的,因此每个线程在修改 value
之前都必须等待对锁的访问。这确保了 value
rrreee
SharedResource
vor, die über zwei Synchronisationsmethoden verfügt: increment
und decrement
. 🎜rrreee🎜Jetzt haben wir zwei Threads Thread1
und Thread2
, die gleichzeitig auf SharedResource
zugreifen. 🎜rrreee🎜In diesem Fall rufen zwei Threads die Methoden inkrementieren
und dekrementieren
parallel auf, aber da diese Methoden synchronisiert sind, ändert jeder Thread den -Wert Code> muss vorher auf den Zugriff auf das Schloss warten. Dadurch wird sichergestellt, dass der Wert von <code>value
immer korrekt ist und keine Parallelitätsprobleme auftreten. 🎜Das obige ist der detaillierte Inhalt vonSynchronisations- und Sperrmechanismus von Schnittstellen und abstrakten Klassen in Java. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Methoden zur Gewährleistung der Thread-Sicherheit flüchtiger Variablen in Java: Sichtbarkeit: Stellen Sie sicher, dass Änderungen an flüchtigen Variablen durch einen Thread für andere Threads sofort sichtbar sind. Atomarität: Stellen Sie sicher, dass bestimmte Vorgänge an flüchtigen Variablen (z. B. Schreiben, Lesen und Vergleichsaustausch) unteilbar sind und nicht durch andere Threads unterbrochen werden.

Zu den Methoden für die Kommunikation zwischen Threads in C++ gehören: gemeinsam genutzter Speicher, Synchronisationsmechanismen (Mutex-Sperren, Bedingungsvariablen), Pipes und Nachrichtenwarteschlangen. Verwenden Sie beispielsweise eine Mutex-Sperre, um einen gemeinsam genutzten Zähler zu schützen: Deklarieren Sie eine Mutex-Sperre (m) und eine gemeinsam genutzte Variable (Zähler). Stellen Sie sicher, dass jeweils nur ein Thread den Zähler aktualisiert um Rennbedingungen zu verhindern.

Fallstricke in der Go-Sprache beim Entwurf verteilter Systeme Go ist eine beliebte Sprache für die Entwicklung verteilter Systeme. Allerdings gibt es bei der Verwendung von Go einige Fallstricke zu beachten, die die Robustheit, Leistung und Korrektheit Ihres Systems beeinträchtigen können. In diesem Artikel werden einige häufige Fallstricke untersucht und praktische Beispiele für deren Vermeidung gegeben. 1. Übermäßiger Gebrauch von Parallelität Go ist eine Parallelitätssprache, die Entwickler dazu ermutigt, Goroutinen zu verwenden, um die Parallelität zu erhöhen. Eine übermäßige Nutzung von Parallelität kann jedoch zu Systeminstabilität führen, da zu viele Goroutinen um Ressourcen konkurrieren und einen Mehraufwand beim Kontextwechsel verursachen. Praktischer Fall: Übermäßiger Einsatz von Parallelität führt zu Verzögerungen bei der Dienstantwort und Ressourcenkonkurrenz, was sich in einer hohen CPU-Auslastung und einem hohen Aufwand für die Speicherbereinigung äußert.

Das C++-Parallelitäts-Framework bietet die folgenden Optionen: leichte Threads (std::thread); Thread-sichere Boost-Parallelitätscontainer und -Algorithmen; leistungsstarke ThreadBuildingBlocks (TBB)-Operationsbibliothek (cpp-Concur).

Deepseek: Wie kann man mit der beliebten KI umgehen, die von Servern überlastet ist? Als heiße KI im Jahr 2025 ist Deepseek frei und Open Source und hat eine Leistung, die mit der offiziellen Version von OpenAio1 vergleichbar ist, die seine Popularität zeigt. Eine hohe Parallelität bringt jedoch auch das Problem der Serververantwortung. Dieser Artikel wird die Gründe analysieren und Bewältigungsstrategien bereitstellen. Eingang der Deepseek -Webversion: https://www.deepseek.com/deepseek Server Beschäftigter Grund: Hoher Zugriff: Deepseeks kostenlose und leistungsstarke Funktionen ziehen eine große Anzahl von Benutzern an, die gleichzeitig verwendet werden können, was zu einer übermäßigen Last von Server führt. Cyber -Angriff: Es wird berichtet, dass Deepseek Auswirkungen auf die US -Finanzbranche hat.

Zu den Methoden zur Programmleistungsoptimierung gehören: Algorithmusoptimierung: Wählen Sie einen Algorithmus mit geringerer Zeitkomplexität und reduzieren Sie Schleifen und bedingte Anweisungen. Auswahl der Datenstruktur: Wählen Sie geeignete Datenstrukturen basierend auf Datenzugriffsmustern aus, z. B. Nachschlagebäume und Hash-Tabellen. Speicheroptimierung: Vermeiden Sie die Erstellung unnötiger Objekte, geben Sie nicht mehr verwendeten Speicher frei und verwenden Sie die Speicherpooltechnologie. Thread-Optimierung: Identifizieren Sie Aufgaben, die parallelisiert werden können, und optimieren Sie den Thread-Synchronisierungsmechanismus. Datenbankoptimierung: Erstellen Sie Indizes, um den Datenabruf zu beschleunigen, optimieren Sie Abfrageanweisungen und verwenden Sie Cache- oder NoSQL-Datenbanken, um die Leistung zu verbessern.

Schnittstellen und abstrakte Klassen werden verwendet, um erweiterbaren PHP-Code zu erstellen, und es gibt den folgenden Hauptunterschied zwischen ihnen: Schnittstellen erzwingen durch Implementierung, während abstrakte Klassen durch Vererbung erzwungen werden. Schnittstellen können keine konkreten Methoden enthalten, abstrakte Klassen hingegen schon. Eine Klasse kann mehrere Schnittstellen implementieren, aber nur von einer abstrakten Klasse erben. Schnittstellen können nicht instanziiert werden, abstrakte Klassen jedoch schon.

Tipps zur Sperrgranularität zur Optimierung der Leistung des gleichzeitigen Go-Cache: Globale Sperre: Einfache Implementierung. Wenn die Sperrgranularität zu groß ist, entsteht unnötiger Wettbewerb. Sperren auf Schlüsselebene: Die Sperrgranularität wird für jeden Schlüssel verfeinert, führt jedoch zu einer großen Anzahl von Sperren und erhöht den Overhead. Shard-Sperre: Teilen Sie den Cache in mehrere Shards auf. Jeder Shard verfügt über eine separate Sperre, um ein Gleichgewicht zwischen Parallelität und Sperrenkonflikt zu erreichen.
