


C++ Concurrent Programming: Wie gehe ich mit der Kommunikation zwischen Threads um?
Zu den Methoden für die Kommunikation zwischen Threads in C++ gehören: gemeinsam genutzter Speicher, Synchronisierungsmechanismen (Mutex-Sperren, Bedingungsvariablen), Pipes und Nachrichtenwarteschlangen. Verwenden Sie beispielsweise eine Mutex-Sperre, um einen gemeinsam genutzten Zähler zu schützen: Deklarieren Sie eine Mutex-Sperre (m) und eine gemeinsam genutzte Variable (Zähler). Stellen Sie sicher, dass jeweils nur ein Thread den Zähler aktualisiert um Rennbedingungen zu verhindern.
C++ Concurrent Programming: Wie gehe ich mit der Kommunikation zwischen Threads um?
In einer Multithread-Anwendung müssen Threads in der Lage sein, miteinander zu kommunizieren, um Aufgaben zu koordinieren und Daten auszutauschen. C++ bietet eine Vielzahl von Mechanismen zur Implementierung der Kommunikation zwischen Threads, darunter:
Gemeinsamer Speicher
Mithilfe von Shared Memory können mehrere Threads auf denselben Speicherbereich zugreifen. Dies ist ein Ansatz mit geringem Overhead, es muss jedoch darauf geachtet werden, Rennbedingungen zu vermeiden.
int shared_data = 0; void thread_1() { shared_data++; // 可能会被其他线程同时访问 } void thread_2() { shared_data++; // 可能会同时导致不正确的结果 }
Synchronisationsmechanismus
Der Synchronisationsmechanismus kann verwendet werden, um Threads beim Zugriff auf gemeinsam genutzte Ressourcen zu koordinieren.
Mutex (Mutex)
Mutex bietet sich gegenseitig ausschließenden Zugriff und stellt sicher, dass jeweils nur ein Thread auf gemeinsam genutzte Ressourcen zugreifen kann.
std::mutex m; void thread_1() { std::lock_guard<std::mutex> l(m); // 获取互斥锁 // 访问共享资源 } void thread_2() { std::lock_guard<std::mutex> l(m); // 获取互斥锁 // 访问共享资源 }
Bedingungsvariable
Bedingungsvariablen ermöglichen es Threads, auf die Erfüllung bestimmter Bedingungen zu warten.
std::condition_variable cv; std::mutex m; void producer() { std::lock_guard<std::mutex> l(m); // 获取互斥锁 while (!condition) { // 等待条件满足 cv.wait(l); } // 生产数据 } void consumer() { std::lock_guard<std::mutex> l(m); // 获取互斥锁 condition = true; cv.notify_all(); // 唤醒所有等待线程 }
Pipe
Pipe ist ein unidirektionaler Kommunikationsmechanismus, der zum Übertragen von Daten zwischen zwei Threads verwendet wird.
std::pipe pipe; void writer() { std::string message = "hello"; std::write(pipe[1], message.c_str(), message.length()); } void reader() { std::string message; std::read(pipe[0], message.data(), message.size()); }
Message Queue
Message Queue bietet einen asynchronen Nachrichtenübermittlungsmechanismus.
key_t key = ftok("message_queue", 'a'); int message_queue = msgget(key, IPC_CREAT | 0666); void sender() { Message msg; msg.mtext = "hello"; msgsnd(message_queue, &msg, sizeof(msg.mtext), IPC_NOWAIT); } void receiver() { Message msg; msgrcv(message_queue, &msg, sizeof(msg.mtext), 0, 0); }
Praktischer Fall: Verwenden eines Mutex zum Schutz eines gemeinsam genutzten Zählers
Angenommen, wir haben einen gemeinsam genutzten Zähler, der von mehreren Threads gleichzeitig aktualisiert werden muss. Wir können diesen Zähler mit einem Mutex schützen:
std::mutex m; int counter = 0; void thread_1() { for (int i = 0; i < 1000000; i++) { std::lock_guard<std::mutex> l(m); counter++; } } void thread_2() { for (int i = 0; i < 1000000; i++) { std::lock_guard<std::mutex> l(m); counter--; } }
Dadurch wird sichergestellt, dass jeweils nur ein Thread den Zähler aktualisieren kann, wodurch Race Conditions verhindert werden.
Das obige ist der detaillierte Inhalt vonC++ Concurrent Programming: Wie gehe ich mit der Kommunikation zwischen Threads um?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen





Die Berechnung von C35 ist im Wesentlichen kombinatorische Mathematik, die die Anzahl der aus 3 von 5 Elementen ausgewählten Kombinationen darstellt. Die Berechnungsformel lautet C53 = 5! / (3! * 2!), Was direkt durch Schleifen berechnet werden kann, um die Effizienz zu verbessern und Überlauf zu vermeiden. Darüber hinaus ist das Verständnis der Art von Kombinationen und Beherrschen effizienter Berechnungsmethoden von entscheidender Bedeutung, um viele Probleme in den Bereichen Wahrscheinlichkeitsstatistik, Kryptographie, Algorithmus -Design usw. zu lösen.

C Sprachmultithreading -Programmierhandbuch: Erstellen von Threads: Verwenden Sie die Funktion pThread_create (), um Thread -ID, Eigenschaften und Threadfunktionen anzugeben. Threadsynchronisation: Verhindern Sie den Datenwettbewerb durch Mutexes, Semaphoren und bedingte Variablen. Praktischer Fall: Verwenden Sie Multi-Threading, um die Fibonacci-Nummer zu berechnen, mehrere Threads Aufgaben zuzuweisen und die Ergebnisse zu synchronisieren. Fehlerbehebung: Lösen Sie Probleme wie Programmabstürze, Thread -Stop -Antworten und Leistungs Engpässe.

STD :: Einzigartige Entfernung benachbarte doppelte Elemente im Container und bewegt sie bis zum Ende, wodurch ein Iterator auf das erste doppelte Element zeigt. STD :: Distanz berechnet den Abstand zwischen zwei Iteratoren, dh die Anzahl der Elemente, auf die sie hinweisen. Diese beiden Funktionen sind nützlich, um den Code zu optimieren und die Effizienz zu verbessern, aber es gibt auch einige Fallstricke, auf die geachtet werden muss, wie z. STD :: Distanz ist im Umgang mit nicht randomischen Zugriffs-Iteratoren weniger effizient. Indem Sie diese Funktionen und Best Practices beherrschen, können Sie die Leistung dieser beiden Funktionen voll ausnutzen.

Die Funktion Release_Semaphor in C wird verwendet, um das erhaltene Semaphor zu freigeben, damit andere Threads oder Prozesse auf gemeinsame Ressourcen zugreifen können. Es erhöht die Semaphorzahl um 1 und ermöglicht es dem Blockierfaden, die Ausführung fortzusetzen.

DEV-C 4.9.9.2 Kompilierungsfehler und -lösungen Wenn das Kompilieren von Programmen in Windows 11-System mit Dev-C 4.9.9.2 kompiliert wird, kann der Compiler-Datensatz die folgende Fehlermeldung anzeigen: GCC.EXE: INTERNEHERERROR: ABTREIDED (programmcollect2) pleasSubMitAfulbugrort.SeeforinSructions. Obwohl die endgültige "Kompilierung erfolgreich ist", kann das tatsächliche Programm nicht ausgeführt werden und eine Fehlermeldung "Original -Code -Archiv kann nicht kompiliert werden" auftauchen. Dies liegt normalerweise daran, dass der Linker sammelt

C eignet sich für die Systemprogrammierung und Hardware-Interaktion, da es Steuerfunktionen in der Nähe von Hardware und leistungsstarke Funktionen der objektorientierten Programmierung bietet. 1) C über Merkmale auf niedrigem Niveau wie Zeiger, Speicherverwaltung und Bitbetrieb können effizienter Betrieb auf Systemebene erreicht werden. 2) Die Hardware -Interaktion wird über Geräte -Treiber implementiert, und C kann diese Treiber so schreiben, dass sie mit Hardware -Geräten über die Kommunikation umgehen.

In der C/C -Codeüberprüfung gibt es häufig Fälle, in denen keine Variablen verwendet werden. In diesem Artikel werden häufige Gründe für ungenutzte Variablen untersucht und erklärt, wie der Compiler Warnungen ausstellt und wie bestimmte Warnungen unterdrückt werden können. Ursachen für nicht verwendete Variablen Es gibt viele Gründe für ungenutzte Variablen im Code: Codefehler oder Fehler: Der direkteste Grund ist, dass es Probleme mit dem Code selbst gibt und die Variablen möglicherweise überhaupt nicht benötigt werden oder sie benötigt, aber nicht korrekt verwendet werden. Code Refactoring: Während des Softwareentwicklungsprozesses wird der Code kontinuierlich geändert und neu gestaltet, und einige einmal wichtige Variablen können zurückgelassen und nicht verwendet werden. Reservierte Variablen: Entwickler können einige Variablen für die zukünftige Verwendung vorlegen, werden jedoch am Ende nicht verwendet. Bedingte Zusammenstellung: Einige Variablen können nur unter bestimmten Bedingungen (z. B. Debug -Modus) liegen

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.
