Heim > Backend-Entwicklung > Python-Tutorial > 深入解析Python编程中JSON模块的使用

深入解析Python编程中JSON模块的使用

WBOY
Freigeben: 2016-06-06 11:14:11
Original
1182 Leute haben es durchsucht

JSON编码支持的基本数据类型为 None , bool , int , float 和 str , 以及包含这些类型数据的lists,tuples和dictionaries。 对于dictionaries,keys需要是字符串类型(字典中任何非字符串类型的key在编码时会先转换为字符串)。 为了遵循JSON规范,你应该只编码Python的lists和dictionaries。 而且,在web应用程序中,顶层对象被编码为一个字典是一个标准做法。

JSON编码的格式对于Python语法而已几乎是完全一样的,除了一些小的差异之外。 比如,True会被映射为true,False被映射为false,而None会被映射为null。 下面是一个例子,演示了编码后的字符串效果:

>>> json.dumps(False)
'false'
>>> d = {'a': True,
...   'b': 'Hello',
...   'c': None}
>>> json.dumps(d)
'{"b": "Hello", "c": null, "a": true}'
>>>
Nach dem Login kopieren

如果你试着去检查JSON解码后的数据,你通常很难通过简单的打印来确定它的结构, 特别是当数据的嵌套结构层次很深或者包含大量的字段时。 为了解决这个问题,可以考虑使用pprint模块的 pprint() 函数来代替普通的 print() 函数。 它会按照key的字母顺序并以一种更加美观的方式输出。 下面是一个演示如何漂亮的打印输出Twitter上搜索结果的例子:

>>> from urllib.request import urlopen
>>> import json
>>> u = urlopen('http://search.twitter.com/search.json?q=python&rpp=5')
>>> resp = json.loads(u.read().decode('utf-8'))
>>> from pprint import pprint
>>> pprint(resp)
{'completed_in': 0.074,
'max_id': 264043230692245504,
'max_id_str': '264043230692245504',
'next_page': '?page=2&max_id=264043230692245504&q=python&rpp=5',
'page': 1,
'query': 'python',
'refresh_url': '?since_id=264043230692245504&q=python',
'results': [{'created_at': 'Thu, 01 Nov 2012 16:36:26 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:14 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:13 +0000',
      'from_user': ...
      },
      {'created_at': 'Thu, 01 Nov 2012 16:36:07 +0000',
      'from_user': ...
      }
      {'created_at': 'Thu, 01 Nov 2012 16:36:04 +0000',
      'from_user': ...
      }],
'results_per_page': 5,
'since_id': 0,
'since_id_str': '0'}
>>>
Nach dem Login kopieren

一般来讲,JSON解码会根据提供的数据创建dicts或lists。 如果你想要创建其他类型的对象,可以给 json.loads() 传递object_pairs_hook或object_hook参数。 例如,下面是演示如何解码JSON数据并在一个OrderedDict中保留其顺序的例子:

>>> s = '{"name": "ACME", "shares": 50, "price": 490.1}'
>>> from collections import OrderedDict
>>> data = json.loads(s, object_pairs_hook=OrderedDict)
>>> data
OrderedDict([('name', 'ACME'), ('shares', 50), ('price', 490.1)])
>>>
Nach dem Login kopieren

下面是如何将一个JSON字典转换为一个Python对象例子:

>>> class JSONObject:
...   def __init__(self, d):
...     self.__dict__ = d
...
>>>
>>> data = json.loads(s, object_hook=JSONObject)
>>> data.name
'ACME'
>>> data.shares
50
>>> data.price
490.1
>>>
Nach dem Login kopieren

最后一个例子中,JSON解码后的字典作为一个单个参数传递给 __init__() 。 然后,你就可以随心所欲的使用它了,比如作为一个实例字典来直接使用它。

在编码JSON的时候,还有一些选项很有用。 如果你想获得漂亮的格式化字符串后输出,可以使用 json.dumps() 的indent参数。 它会使得输出和pprint()函数效果类似。比如:

>>> print(json.dumps(data))
{"price": 542.23, "name": "ACME", "shares": 100}
>>> print(json.dumps(data, indent=4))
{
  "price": 542.23,
  "name": "ACME",
  "shares": 100
}
>>>
Nach dem Login kopieren

对象实例通常并不是JSON可序列化的。例如:

>>> class Point:
...   def __init__(self, x, y):
...     self.x = x
...     self.y = y
...
>>> p = Point(2, 3)
>>> json.dumps(p)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python3.3/json/__init__.py", line 226, in dumps
    return _default_encoder.encode(obj)
  File "/usr/local/lib/python3.3/json/encoder.py", line 187, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "/usr/local/lib/python3.3/json/encoder.py", line 245, in iterencode
    return _iterencode(o, 0)
  File "/usr/local/lib/python3.3/json/encoder.py", line 169, in default
    raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <__main__.Point object at 0x1006f2650> is not JSON serializable
>>>
Nach dem Login kopieren

如果你想序列化对象实例,你可以提供一个函数,它的输入是一个实例,返回一个可序列化的字典。例如:

def serialize_instance(obj):
  d = { '__classname__' : type(obj).__name__ }
  d.update(vars(obj))
  return d
Nach dem Login kopieren

如果你想反过来获取这个实例,可以这样做:

# Dictionary mapping names to known classes
classes = {
  'Point' : Point
}

def unserialize_object(d):
  clsname = d.pop('__classname__', None)
  if clsname:
    cls = classes[clsname]
    obj = cls.__new__(cls) # Make instance without calling __init__
    for key, value in d.items():
      setattr(obj, key, value)
      return obj
  else:
    return d

Nach dem Login kopieren

下面是如何使用这些函数的例子:

>>> p = Point(2,3)
>>> s = json.dumps(p, default=serialize_instance)
>>> s
'{"__classname__": "Point", "y": 3, "x": 2}'
>>> a = json.loads(s, object_hook=unserialize_object)
>>> a
<__main__.Point object at 0x1017577d0>
>>> a.x
2
>>> a.y
3
>>>
Nach dem Login kopieren

json 模块还有很多其他选项来控制更低级别的数字、特殊值如NaN等的解析。 可以参考官方文档获取更多细节。

Verwandte Etiketten:
Quelle:php.cn
Erklärung dieser Website
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage