Python Matplotlib库入门指南
Matplotlib简介
Matplotlib是一个Python工具箱,用于科学计算的数据可视化。借助它,Python可以绘制如Matlab和Octave多种多样的数据图形。最初是模仿了Matlab图形命令, 但是与Matlab是相互独立的.
通过Matplotlib中简单的接口可以快速的绘制2D图表
初试Matplotlib
Matplotlib中的pyplot子库提供了和matlab类似的绘图API.
代码如下:
import matplotlib.pyplot as plt #导入pyplot子库
plt.figure(figsize=(8, 4)) #创建一个绘图对象, 并设置对象的宽度和高度, 如果不创建直接调用plot, Matplotlib会直接创建一个绘图对象
plt.plot([1, 2, 3, 4]) #此处设置y的坐标为[1, 2, 3, 4], 则x的坐标默认为[0, 1, 2, 3]在绘图对象中进行绘图, 可以设置label, color和linewidth关键字参数
plt.ylabel('some numbers') #给y轴添加标签, 给x轴加标签用xlable
plt.title("hello"); #给2D图加标题
plt.show() #显示2D图
基础绘图
绘制折线图
与所选点的坐标有关
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = [0, 1, 2, 4, 5, 6]
y = [1, 2, 3, 2, 4, 1]
plt.plot(x, y, '-*r') # 虚线, 星点, 红色
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()
更改线的样式查看plot函数参数设置
多线图
只需要在plot函数中传入多对x-y坐标对就能画出多条线
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = [0, 1, 2, 4, 5, 6]
y = [1, 2, 3, 2, 4, 1]
z = [1, 2, 3, 4, 5, 6]
plt.plot(x, y, '--*r', x, z, '-.+g')
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.title("hello world")
plt.show()
柱状图
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = [0, 1, 2, 4, 5, 6]
y = [1, 2, 3, 2, 4, 1]
z = [1, 2, 3, 4, 5, 6]
plt.bar(x, y)
plt.xlabel("x-axis")
plt.ylabel("y-axis")
plt.show()
子图
subplot()函数指明numrows行数, numcols列数, fignum图个数. 图的个数不能超过行数和列数之积
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = [0, 1, 2, 4, 5, 6]
y = [1, 2, 3, 2, 4, 1]
z = [1, 2, 3, 4, 5, 6]
plt.figure(1)
plt.subplot(211)
plt.plot(x, y, '-+b')
plt.subplot(212)
plt.plot(x, z, '-.*r')
plt.show()
文本添加
当需要在图片上调价文本时需要使用text()函数, 还有xlabel(), ylabel(), title()函数
text()函数返回matplotlib.text.Text, 函数详细解释
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
x = [0, 1, 2, 4, 5, 6]
y = [1, 2, 3, 2, 4, 1]
plt.plot(x, y, '-.*r')
plt.text(1, 2, "I'm a text") //前两个参数表示文本坐标, 第三个参数为要添加的文本
plt.show()
图例简介
legend()函数实现了图例功能, 他有两个参数, 第一个为样式对象, 第二个为描述字符
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
line_up, = plt.plot([1,2,3], label='Line 2')
line_down, = plt.plot([3,2,1], label='Line 1')
plt.legend(handles=[line_up, line_down])
plt.show()
或者调用set_label()添加图例
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
line, = plt.plot([1, 2, 3])
line.set_label("Label via method")
plt.legend()
plt.show()
同时对多条先添加图例
代码如下:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
line1, = plt.plot([1, 2, 3])
line2, = plt.plot([3, 2, 1], '--b')
plt.legend((line1, line2), ('line1', 'line2'))
plt.show()
更多图例设置可以参考官方图例教程

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



PHP und Python haben ihre eigenen Vor- und Nachteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1.PHP eignet sich für eine schnelle Entwicklung und Wartung großer Webanwendungen. 2. Python dominiert das Gebiet der Datenwissenschaft und des maschinellen Lernens.

Aktivieren Sie die Pytorch -GPU -Beschleunigung am CentOS -System erfordert die Installation von CUDA-, CUDNN- und GPU -Versionen von Pytorch. Die folgenden Schritte führen Sie durch den Prozess: Cuda und Cudnn Installation Bestimmen Sie die CUDA-Version Kompatibilität: Verwenden Sie den Befehl nvidia-smi, um die von Ihrer NVIDIA-Grafikkarte unterstützte CUDA-Version anzuzeigen. Beispielsweise kann Ihre MX450 -Grafikkarte CUDA11.1 oder höher unterstützen. Download und installieren Sie Cudatoolkit: Besuchen Sie die offizielle Website von Nvidiacudatoolkit und laden Sie die entsprechende Version gemäß der höchsten CUDA -Version herunter und installieren Sie sie, die von Ihrer Grafikkarte unterstützt wird. Installieren Sie die Cudnn -Bibliothek:

Python und JavaScript haben ihre eigenen Vor- und Nachteile in Bezug auf Gemeinschaft, Bibliotheken und Ressourcen. 1) Die Python-Community ist freundlich und für Anfänger geeignet, aber die Front-End-Entwicklungsressourcen sind nicht so reich wie JavaScript. 2) Python ist leistungsstark in Bibliotheken für Datenwissenschaft und maschinelles Lernen, während JavaScript in Bibliotheken und Front-End-Entwicklungsbibliotheken und Frameworks besser ist. 3) Beide haben reichhaltige Lernressourcen, aber Python eignet sich zum Beginn der offiziellen Dokumente, während JavaScript mit Mdnwebdocs besser ist. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Docker verwendet Linux -Kernel -Funktionen, um eine effiziente und isolierte Anwendungsumgebung zu bieten. Sein Arbeitsprinzip lautet wie folgt: 1. Der Spiegel wird als schreibgeschützte Vorlage verwendet, die alles enthält, was Sie für die Ausführung der Anwendung benötigen. 2. Das Union File System (UnionFS) stapelt mehrere Dateisysteme, speichert nur die Unterschiede, speichert Platz und beschleunigt. 3. Der Daemon verwaltet die Spiegel und Container, und der Kunde verwendet sie für die Interaktion. 4. Namespaces und CGroups implementieren Container -Isolation und Ressourcenbeschränkungen; 5. Mehrere Netzwerkmodi unterstützen die Containerverbindung. Nur wenn Sie diese Kernkonzepte verstehen, können Sie Docker besser nutzen.

Minio-Objektspeicherung: Hochleistungs-Bereitstellung im Rahmen von CentOS System Minio ist ein hochleistungsfähiges, verteiltes Objektspeichersystem, das auf der GO-Sprache entwickelt wurde und mit Amazons3 kompatibel ist. Es unterstützt eine Vielzahl von Kundensprachen, darunter Java, Python, JavaScript und Go. In diesem Artikel wird kurz die Installation und Kompatibilität von Minio zu CentOS -Systemen vorgestellt. CentOS -Versionskompatibilitätsminio wurde in mehreren CentOS -Versionen verifiziert, einschließlich, aber nicht beschränkt auf: CentOS7.9: Bietet einen vollständigen Installationshandbuch für die Clusterkonfiguration, die Umgebungsvorbereitung, die Einstellungen von Konfigurationsdateien, eine Festplattenpartitionierung und Mini

Pytorch Distributed Training on CentOS -System erfordert die folgenden Schritte: Pytorch -Installation: Die Prämisse ist, dass Python und PIP im CentOS -System installiert sind. Nehmen Sie abhängig von Ihrer CUDA -Version den entsprechenden Installationsbefehl von der offiziellen Pytorch -Website ab. Für CPU-Schulungen können Sie den folgenden Befehl verwenden: PipinstallTorChTorChVisionTorChaudio Wenn Sie GPU-Unterstützung benötigen, stellen Sie sicher, dass die entsprechende Version von CUDA und CUDNN installiert ist und die entsprechende Pytorch-Version für die Installation verwenden. Konfiguration der verteilten Umgebung: Verteiltes Training erfordert in der Regel mehrere Maschinen oder mehrere Maschinen-Mehrfach-GPUs. Ort

Bei der Installation von PyTorch am CentOS -System müssen Sie die entsprechende Version sorgfältig auswählen und die folgenden Schlüsselfaktoren berücksichtigen: 1. Kompatibilität der Systemumgebung: Betriebssystem: Es wird empfohlen, CentOS7 oder höher zu verwenden. CUDA und CUDNN: Pytorch -Version und CUDA -Version sind eng miteinander verbunden. Beispielsweise erfordert Pytorch1.9.0 CUDA11.1, während Pytorch2.0.1 CUDA11.3 erfordert. Die Cudnn -Version muss auch mit der CUDA -Version übereinstimmen. Bestimmen Sie vor der Auswahl der Pytorch -Version unbedingt, dass kompatible CUDA- und CUDNN -Versionen installiert wurden. Python -Version: Pytorch Official Branch

Das Aktualisieren von PyTorch auf der neuesten Version von CentOS kann die folgenden Schritte ausführen: Methode 1: Aktualisieren von PIP mit PIP: Stellen Sie zunächst sicher, dass Ihr PIP die neueste Version ist, da ältere Versionen von PIP möglicherweise nicht in der Lage sind, die neueste Version von PyTorch ordnungsgemäß zu installieren. Pipinstall-upgradePip Die alte Version von Pytorch (falls installiert): PipuninstallTorChTorChVisionTorChaudio-Installation Neueste
