Python入门
第一章 介绍
脚本语言是类似DOS批处理、UNIX shell程序的语言。脚本语言不需要每次编译再执行,并且在执行中可以很容易地访问正在运行的程序,甚至可以动态地修改正在运行的程序,适用于快速地开发以及完成一些简单的任务。在使用脚本语言时常常需要增的新的功能,但有时因为脚本语言本来就已经很慢、很大、很复杂了而不能实现;或者,所需的功能涉及只能用C语言提供的系统调用或其他函数——通常所要解决的问题没有重要到必须用C语言重写的程度;或者,解决问题需要诸如可变长度字符串等数据类型(如文件名的有序列表),这样的数据类型在脚本语言中十分容易而C语言则需要很多工作才能实现;或者,编程者不熟悉C语言:这些情况下还是可以使用脚本语言的。
在这样的情况下,Python可能正好适合你的需要。Python使用简单,但它是一个真正的程序语言,而且比shell提供了更多结构和对大型程序的支持。另一方面,它比C提供更多的错误检查,它是一个非常高级的语言,内置了各种高级数据结构,如灵活的数组和字典,这些数据结构要用C高效实现的话可能要花费你几天的时间。由于Python具有更一般的数据结构,它比Awk甚至Perl适用的范围都广,而许多东西在Python内至少和在这些语言内一样容易。
Python允许你把程序分解为模块,模块可以在其他Python程序中重用。它带有一大批标准模块可以作为你自己的程序的基础——或作为学习Python编程的例子。系统还提供了关于文件输入输出、系统调用、插座(sockets)的东西,甚至提供了窗口系统(STDWIN)的通用接口。
Python是一个解释性语言,因为不需要编译和连接所以能节省大量的程序开发时间。解释程序可以交互使用,这样可以可以很容易地试验语言的各种特色,写只用一次的程序,或在从底向上程序开发中测试函数。它也是一个方便的计算器。
Python允许你写出非常严谨而且可读的程序。用Python写的程序通常都比相应的C程序要短,因为如下几个理由:
高级的数据结构允许你用一个语句表达复杂的操作;
复合语句是靠缩进而不是用表示开始和结束的括号;
不需要变量声明或参量声明。
Python是可扩充的:如果你会用C语言编程就很容易为解释程序增加新的内置函数或模块,这样可以以最快速度执行关键操作,或把Python程序和只能以二进制码提供的库(如不同厂商提供的图形库)连接起来。当你变得确实很在行时你可以把Python解释器与用C写的应用相连接,把它作为该应用的扩展或命令语言。
Python的命名是由BBC的“Monty Python's Flying Circus”节目而得,与蟒蛇没有什么关系。

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.
