python算法学习之基数排序实例
基数排序法又称桶子法(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些"桶"中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。
代码如下:
# -*- coding: utf-8 -*-
def _counting_sort(A, i):
"""计数排序,以i位进行排序,以适用于基数排序。
Args:
A (Sequence): 排序数组
i (int): 位数,从0开始而不是1
"""
C = [0] * 10 # 任意位值范围为[0,9]
A = [(a / (10 ** i) % 10, a) for a in A] # 元素i位值及其自身的元组的数组
for k, a in A:
C[k] = C[k] + 1
for i in xrange(1, 10):
C[i] = C[i] + C[i-1]
B = [0] * len(A) # 结果数组
for k, a in A[::-1]:
B[C[k]-1] = a
C[k] = C[k] - 1
return B
def radix_sort(A, d):
"""基数排序,从最低位进行排序直到最高位:
RADIX-SORT(A, d)
1 for i ← 1 to d
2 do use a stable sort to sort array A on digit i
Args:
A (Sequence): 排序数组
d (int): 最大数位数
"""
for i in xrange(d): # 遍历位数,从低到高
A = _counting_sort(A, i)
return A
def rsort(A, d):
"""基数排序(桶排序版本)"""
for i in xrange(d): # 遍历位数,从低到高
S = [[] for _ in xrange(10)] # 存放[0,9]位数值所对应元素([0-9]10个桶)
for a in A: # 遍历元素
S[a / (10 ** i) % 10].append(a) # 存放对应位数值的元素(元素当前位值在哪个桶就放进去)
A = [a for b in S for a in b] # 以当前位数值排序好的A(依次从各桶里把元素拿出来)
return A
if __name__ == '__main__':
import random, timeit
items = range(10000)
random.shuffle(items)
def test_sorted():
print(items)
sorted_items = sorted(items)
print(sorted_items)
def test_radix_sort():
print(items)
sorted_items = radix_sort(items, 4) # [0,9999],4位数
print(sorted_items)
test_methods = [test_sorted, test_radix_sort]
for test in test_methods:
name = test.__name__ # test.func_name
t = timeit.Timer(name + '()', 'from __main__ import ' + name)
print(name + ' takes time : %f' % t.timeit(1))

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti
