python实现的一个p2p文件传输实例
考虑到我手上的服务器逐渐的增多,有时候需要大规模的部署同一个文件,例如因为方便使用systemtap这个工具定位问题,需要把手上几百台服务器同时安装kernel-debuginfo这个包,原有的方式采用一个源服务器,采用rsync或者scp之类的文件传输方式只能做到一个点往下分发这个文件,这个时候下发的速度就会比较的慢,基于以上原因,我写了一个基于bt协议传输文件的小工具,实际测试,传输到10个机房,70多台机器传输一个240M的这个内核文件,到所有的机器,源采用限速2m/s的上传速度,测试的结果大概只要140s,就可以全部传输完毕,这个效率是非常之高,如果不限速的情况下速度会更快,下面把这个程序开源出来。
代码如下:
#!/usr/bin/env python
import libtorrent as lt
import sys
import os
import time
from optparse import OptionParser
import socket
import struct
import fcntl
def get_interface_ip(ifname):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 0x8915, struct.pack('256s',
ifname[:15]))[20:24])
def ip2long(ip):
return reduce(lambda a,b:(a
def get_wan_ip_address():
interfaces = set(['eth0', 'eth1', 'eth2', 'eth3', 'em1', 'em2', 'em3', 'em4'])
ip = ''
for i in interfaces:
try:
ip = get_interface_ip(i)
if (ip2long(ip) ip2long('10.255.255.255')) \
and (ip2long(ip) ip2long('172.33.255.255')) \
and (ip2long(ip) ip2long('192.168.255.255')):
return ip
except:
pass
return ip
def make_torrent(path, save):
fs = lt.file_storage()
lt.add_files(fs, path)
if fs.num_files() == 0:
print 'no files added'
sys.exit(1)
input = os.path.abspath(path)
basename = os.path.basename(path)
t = lt.create_torrent(fs, 0, 4 * 1024 * 1024)
t.add_tracker("http://10.0.1.5:8760/announce")
t.set_creator('libtorrent %s' % lt.version)
lt.set_piece_hashes(t, os.path.split(input)[0], lambda x: sys.stderr.write('.'))
sys.stderr.write('\n')
save = os.path.dirname(input)
save = "%s/%s.torrent" % (save, basename)
f=open(save, "wb")
f.write(lt.bencode(t.generate()))
f.close()
print "the bt torrent file is store at %s" % save
def dl_status(handle):
while not (handle.is_seed()):
s = handle.status()
state_str = ['queued', 'checking', 'downloading metadata', \
'downloading', 'finished', 'seeding', 'allocating', 'checking fastresume']
print '\ractive_time: %d, %.2f%% complete (down: %.1f kb/s up: %.1f kB/s peers: %d, seeds: %d) %s' % \
(s.active_time, s.progress * 100, s.download_rate / 1000, s.upload_rate / 1000, \
s.num_peers, s.num_seeds, state_str[s.state]),
sys.stdout.flush()
time.sleep(1)
def seed_status(handle, seedtime=100):
seedtime = int(seedtime)
if seedtime seedtime = 100
while seedtime > 0:
seedtime -= 1
s = handle.status()
state_str = ['queued', 'checking', 'downloading metadata', \
'downloading', 'finished', 'seeding', 'allocating', 'checking fastresume']
print '\rseed_time: %d, %.2f%% complete (down: %.1f kb/s up: %.1f kB/s peers: %d, seeds: %d) %s' % \
(s.active_time, s.progress * 100, s.download_rate / 1000, s.upload_rate / 1000, \
s.num_peers, s.num_seeds, state_str[s.state]),
sys.stdout.flush()
time.sleep(1)
def remove_torrents(torrent, session):
session.remove_torrent(torrent)
def read_alerts(session):
alert = session.pop_alert()
while alert:
#print alert, alert.message()
alert = session.pop_alert()
def download(torrent, path, upload_rate_limit=0, seedtime=100):
try:
session = lt.session()
session.set_alert_queue_size_limit(1024 * 1024)
sts = lt.session_settings()
sts.ssl_listen = False
sts.user_agent = "Thunder deploy system"
sts.tracker_completion_timeout = 5
sts.tracker_receive_timeout = 5
sts.stop_tracker_timeout = 5
sts.active_downloads = -1
sts.active_seeds = -1
sts.active_limit = -1
sts.auto_scrape_min_interval = 5
sts.udp_tracker_token_expiry = 120
sts.min_announce_interval = 1
sts.inactivity_timeout = 60
sts.connection_speed = 10
sts.allow_multiple_connections_per_ip = True
sts.max_out_request_queue = 128
sts.request_queue_size = 3
sts.use_read_cache = False
session.set_settings(sts)
session.set_alert_mask(lt.alert.category_t.tracker_notification | lt.alert.category_t.status_notification)
session.set_alert_mask(lt.alert.category_t.status_notification)
ipaddr = get_wan_ip_address()
#print ipaddr
if ipaddr == "":
session.listen_on(6881, 6881)
else:
session.listen_on(6881, 6881, ipaddr)
limit = int(upload_rate_limit)
if limit>=100:
session.set_upload_rate_limit(limit*1024)
session.set_local_upload_rate_limit(limit*1024)
print session.upload_rate_limit()
torrent_info = lt.torrent_info(torrent)
add_params = {
'save_path': path,
'storage_mode': lt.storage_mode_t.storage_mode_sparse,
'paused': False,
'auto_managed': True,
'ti': torrent_info,
}
handle = session.add_torrent(add_params)
read_alerts(session)
st = time.time()
dl_status(handle)
et = time.time() - st
print '\nall file download in %.2f\nstart to seeding\n' % et
sys.stdout.write('\n')
handle.super_seeding()
seed_status(handle, seedtime)
remove_torrents(handle, session)
assert len(session.get_torrents()) == 0
finally:
print 'download finished'
if __name__ == '__main__':
usage = "usage: %prog [options] \n \
%prog -d -f
or \n \
%prog -m -p
parser = OptionParser(usage=usage)
parser.add_option("-d", "--download", dest="download",
help="start to download file", action="store_false", default=True)
parser.add_option("-f", "--file", dest="file",
help="torrent file")
parser.add_option("-u", "--upload", dest="upload",
help="set upload rate limit, default is not limit", default=0)
parser.add_option("-t", "--time", dest="time",
help="set seed time, default is 100s", default=100)
parser.add_option("-p", "--path", dest="path",
help="to make torrent with this path")
parser.add_option("-m", "--make", dest="make",
help="make torrent", action="store_false", default=True)
parser.add_option("-s", "--save", dest="save",
help="file save path, default is store to ./", default="./")
(options, args) = parser.parse_args()
#download(sys.argv[1])
if len(sys.argv) != 6 and len(sys.argv) != 4 and len(sys.argv) != 8 and len(sys.argv) != 10:
parser.print_help()
sys.exit()
if options.download == False and options.file !="":
download(options.file, options.save, options.upload, options.time)
elif options.make == False and options.path != "":
make_torrent(options.path, options.save)
准备环境:
需要在所有的os上面安装一个libtorrent的库,下载地址:
http://code.google.com/p/libtorrent/downloads/list
记得编译的时候带上./configure –enable-python-binding,然后mak,make install,进入binding目录,make,make install就
可以运行这个小的工具
当然大规模部署不可能采用每一台都去编译安装的方式,只要把编译出来的libtorrent.so libtorrent-rasterbar.so.7的文件跟bt.py这个文件放到同一个目录,另外写一个shell脚本
代码如下:
lib=`dirname $0`
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$lib
python bt.py -d -f -s -t -u
使用方法:
首先在源服务器上面生成种子文件
代码如下:
python bt.py -m -p -s
发布文件
在源服务器上面,执行
代码如下:
python bt.py -d -f -s -t -u
其中做种时间默认设置的是100s,上传速度默认不限制,限制的速度单位是KB
下面的机器,直接可以
代码如下:
python bt.py -d -f -s -t
只要有一台机器完成了,就自动作为种子,在下载的过程中也会上传,任何一台机器都可以作为源服务器,当然了这里面还有中心的tracker服务器,脚本当中,我搭建了一个tracker源服务器,放到10.0.1.5端口是8760上面,当然大家也可以采用opentracker这个软件自己搭建一个tracker服务器,修改其中的源代码对应部分,另外考虑到发布都是私有文件,代码当作已经禁止了dht,如果还想更安全,就自己搭建一个私有的tracker server,具体搭建方法就使用一下搜索引擎,查找一下搭建的方法!
目前基本做到可以使用,后续考虑更简单一点,采用磁力链接的方式,这样就可以做到不用每台都要拷贝一个种子文件,采用一个单独的命令行就可以发布整个文件

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Die Geschwindigkeit der mobilen XML zu PDF hängt von den folgenden Faktoren ab: der Komplexität der XML -Struktur. Konvertierungsmethode für mobile Hardware-Konfiguration (Bibliothek, Algorithmus) -Codierungsoptimierungsmethoden (effiziente Bibliotheken, Optimierung von Algorithmen, Cache-Daten und Nutzung von Multi-Threading). Insgesamt gibt es keine absolute Antwort und es muss gemäß der spezifischen Situation optimiert werden.

Mit einer einzigen Anwendung ist es unmöglich, XML -zu -PDF -Konvertierung direkt auf Ihrem Telefon zu vervollständigen. Es ist erforderlich, Cloud -Dienste zu verwenden, die in zwei Schritten erreicht werden können: 1. XML in PDF in der Cloud, 2. Zugriff auf die konvertierte PDF -Datei auf dem Mobiltelefon konvertieren oder herunterladen.

Es gibt keine integrierte Summenfunktion in der C-Sprache, daher muss sie selbst geschrieben werden. Die Summe kann erreicht werden, indem das Array durchquert und Elemente akkumulieren: Schleifenversion: Die Summe wird für die Schleifen- und Arraylänge berechnet. Zeigerversion: Verwenden Sie Zeiger, um auf Array-Elemente zu verweisen, und eine effiziente Summierung wird durch Selbststillstandszeiger erzielt. Dynamisch Array -Array -Version zuweisen: Zuordnen Sie Arrays dynamisch und verwalten Sie selbst den Speicher selbst, um sicherzustellen, dass der zugewiesene Speicher befreit wird, um Speicherlecks zu verhindern.

Eine Anwendung, die XML direkt in PDF konvertiert, kann nicht gefunden werden, da es sich um zwei grundlegend unterschiedliche Formate handelt. XML wird zum Speichern von Daten verwendet, während PDF zur Anzeige von Dokumenten verwendet wird. Um die Transformation abzuschließen, können Sie Programmiersprachen und Bibliotheken wie Python und ReportLab verwenden, um XML -Daten zu analysieren und PDF -Dokumente zu generieren.

XML kann mithilfe eines XSLT -Konverters oder einer Bildbibliothek in Bilder konvertiert werden. XSLT -Konverter: Verwenden Sie einen XSLT -Prozessor und Stylesheet, um XML in Bilder zu konvertieren. Bildbibliothek: Verwenden Sie Bibliotheken wie Pil oder Imagemagick, um Bilder aus XML -Daten zu erstellen, z. B. Zeichnen von Formen und Text.

Um XML -Bilder zu konvertieren, müssen Sie zuerst die XML -Datenstruktur ermitteln, dann eine geeignete grafische Bibliothek (z. B. Pythons Matplotlib) und eine Methode auswählen, eine Visualisierungsstrategie basierend auf der Datenstruktur auswählen, das Datenvolumen und das Bildformat, die Batch -Verarbeitung ausführen oder effiziente Bibliotheken verwenden und schließlich als PNG, JPEG oder SVG nach den Bedürfnissen speichern.

XML -Formatierungs -Tools können Code nach Regeln eingeben, um die Lesbarkeit und das Verständnis zu verbessern. Achten Sie bei der Auswahl eines Tools auf die Anpassungsfunktionen, den Umgang mit besonderen Umständen, die Leistung und die Benutzerfreundlichkeit. Zu den häufig verwendeten Werkzeugtypen gehören Online-Tools, IDE-Plug-Ins und Befehlszeilen-Tools.

Es gibt keine App, die alle XML -Dateien in PDFs umwandeln kann, da die XML -Struktur flexibel und vielfältig ist. Der Kern von XML zu PDF besteht darin, die Datenstruktur in ein Seitenlayout umzuwandeln, für das XML analysiert und PDF generiert werden muss. Zu den allgemeinen Methoden gehören das Parsen von XML mithilfe von Python -Bibliotheken wie ElementTree und das Generieren von PDFs unter Verwendung der ReportLab -Bibliothek. Für komplexe XML kann es erforderlich sein, XSLT -Transformationsstrukturen zu verwenden. Wenn Sie die Leistung optimieren, sollten Sie Multithread- oder Multiprozesse verwenden und die entsprechende Bibliothek auswählen.
