如何用 Python 科学计算中的矩阵替代循环?
比如求一个平面稳态导热问题,控制方程就是拉普拉斯方程:
(我才发现原来有[插入公式]这个功能)
按照最简单的毅种循环来写就是:
def laplace(u): nx, ny = u.shape for i in xrange(1,nx-1): for j in xrange(1, ny-1): u[i,j] = ((u[i+1, j] + u[i-1, j]) * dy2 + (u[i, j+1] + u[i, j-1]) * dx2) / (2*(dx2+dy2))
你们都不知道numexpr的么←_←
比numpy还黑的科技→_→
虽然能用的运算没多少吧但是对大矩阵的整体运算还是很快的←_←
最近正好在学numpy这个模块。题主可以看看这个教程,不是很全,但是科学计算方面还是有不少东西的:NumPy-快速处理数据
引用教程中的代码:
import time import math import numpy as np x = [i * 0.001 for i in xrange(1000000)] # 初始化数组0.000~999.999 start = time.clock() for i, t in enumerate(x): # 用循环计算正弦值 x[i] = math.sin(t) print "math.sin:", time.clock() - start x = [i * 0.001 for i in xrange(1000000)] x = np.array(x) # 初始化矩阵(这里是一维) start = time.clock() np.sin(x,x) # numpy的广播计算(代替循环) print "numpy.sin:", time.clock() - start # 输出 # math.sin: 1.15426932753 # numpy.sin: 0.0882399858083
用numpy, Cython, 或者 weave
Speed up Python
SciPy官网有关于如何提高Python Performance的教程
PerformancePython
用Pyrex/Cython或者weave基本上可以达到C++的速度。
Laplace的例子,500*500矩阵,100次循环。
numpy和pandas.DataFrame的矩阵运算可以广播,可以map。
第一个技巧是,用map和lambda表达式来生成你要的迭代参数,比如生成一个平方表:map(lambda x: x*x, xrange(100)),这是个黑科技,可以很快速的生成你需要的循环参数;
第二个技巧是,熟练使用矩阵掩膜(mask)来简化循环,比如把矩阵a中小于100的值都置零:a[a<100] = 0,比循环快很多;
第三个技巧是,多使用各种库,如numpy, scipy(signal库简直好顶赞),如果你做图像,opencv库是唯一的选择。
大致是这样,实际应用中更多的是前两个trick混合使用。
想要快,就内嵌C,Python是解释性语言,会比较慢。
有成熟的计算软件时用的C/C+++python的模式,核心算法和耗时最多的逻辑用C/C++,其他用python.

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen

Die Geschwindigkeit der mobilen XML zu PDF hängt von den folgenden Faktoren ab: der Komplexität der XML -Struktur. Konvertierungsmethode für mobile Hardware-Konfiguration (Bibliothek, Algorithmus) -Codierungsoptimierungsmethoden (effiziente Bibliotheken, Optimierung von Algorithmen, Cache-Daten und Nutzung von Multi-Threading). Insgesamt gibt es keine absolute Antwort und es muss gemäß der spezifischen Situation optimiert werden.

Mit einer einzigen Anwendung ist es unmöglich, XML -zu -PDF -Konvertierung direkt auf Ihrem Telefon zu vervollständigen. Es ist erforderlich, Cloud -Dienste zu verwenden, die in zwei Schritten erreicht werden können: 1. XML in PDF in der Cloud, 2. Zugriff auf die konvertierte PDF -Datei auf dem Mobiltelefon konvertieren oder herunterladen.

Es gibt keine integrierte Summenfunktion in der C-Sprache, daher muss sie selbst geschrieben werden. Die Summe kann erreicht werden, indem das Array durchquert und Elemente akkumulieren: Schleifenversion: Die Summe wird für die Schleifen- und Arraylänge berechnet. Zeigerversion: Verwenden Sie Zeiger, um auf Array-Elemente zu verweisen, und eine effiziente Summierung wird durch Selbststillstandszeiger erzielt. Dynamisch Array -Array -Version zuweisen: Zuordnen Sie Arrays dynamisch und verwalten Sie selbst den Speicher selbst, um sicherzustellen, dass der zugewiesene Speicher befreit wird, um Speicherlecks zu verhindern.

Eine Anwendung, die XML direkt in PDF konvertiert, kann nicht gefunden werden, da es sich um zwei grundlegend unterschiedliche Formate handelt. XML wird zum Speichern von Daten verwendet, während PDF zur Anzeige von Dokumenten verwendet wird. Um die Transformation abzuschließen, können Sie Programmiersprachen und Bibliotheken wie Python und ReportLab verwenden, um XML -Daten zu analysieren und PDF -Dokumente zu generieren.

XML kann mithilfe eines XSLT -Konverters oder einer Bildbibliothek in Bilder konvertiert werden. XSLT -Konverter: Verwenden Sie einen XSLT -Prozessor und Stylesheet, um XML in Bilder zu konvertieren. Bildbibliothek: Verwenden Sie Bibliotheken wie Pil oder Imagemagick, um Bilder aus XML -Daten zu erstellen, z. B. Zeichnen von Formen und Text.

XML -Formatierungs -Tools können Code nach Regeln eingeben, um die Lesbarkeit und das Verständnis zu verbessern. Achten Sie bei der Auswahl eines Tools auf die Anpassungsfunktionen, den Umgang mit besonderen Umständen, die Leistung und die Benutzerfreundlichkeit. Zu den häufig verwendeten Werkzeugtypen gehören Online-Tools, IDE-Plug-Ins und Befehlszeilen-Tools.

Um XML -Bilder zu konvertieren, müssen Sie zuerst die XML -Datenstruktur ermitteln, dann eine geeignete grafische Bibliothek (z. B. Pythons Matplotlib) und eine Methode auswählen, eine Visualisierungsstrategie basierend auf der Datenstruktur auswählen, das Datenvolumen und das Bildformat, die Batch -Verarbeitung ausführen oder effiziente Bibliotheken verwenden und schließlich als PNG, JPEG oder SVG nach den Bedürfnissen speichern.

Es gibt keine App, die alle XML -Dateien in PDFs umwandeln kann, da die XML -Struktur flexibel und vielfältig ist. Der Kern von XML zu PDF besteht darin, die Datenstruktur in ein Seitenlayout umzuwandeln, für das XML analysiert und PDF generiert werden muss. Zu den allgemeinen Methoden gehören das Parsen von XML mithilfe von Python -Bibliotheken wie ElementTree und das Generieren von PDFs unter Verwendung der ReportLab -Bibliothek. Für komplexe XML kann es erforderlich sein, XSLT -Transformationsstrukturen zu verwenden. Wenn Sie die Leistung optimieren, sollten Sie Multithread- oder Multiprozesse verwenden und die entsprechende Bibliothek auswählen.
