123456789组成的3×3的矩阵的行列式最大的值是多少?
123456789怎样运算等于1? - abccsss 的回答假定每个数字只能出现一次。
回复内容:
Mathematica代码较简洁
Det/@N@Range@9~Permutations~{9}~ArrayReshape~{9!,3,3}//Max

以上用Matlab暴力破解(枚举

<span class="n">max_det</span> <span class="p">=</span> <span class="mi">0</span><span class="p">;</span> <span class="n">init_perm</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span> <span class="n">all_perms</span> <span class="p">=</span> <span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span> <span class="k">for</span> <span class="nb">i</span> <span class="p">=</span> <span class="mi">1</span><span class="p">:</span><span class="nb">size</span><span class="p">(</span><span class="n">all_perms</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="n">matrix</span> <span class="p">=</span> <span class="n">all_perms</span><span class="p">(</span><span class="nb">i</span><span class="p">,</span> <span class="p">:);</span> <span class="n">matrix</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="n">matrix</span><span class="p">,</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">]);</span> <span class="n">det_value</span> <span class="p">=</span> <span class="n">det</span><span class="p">(</span><span class="n">matrix</span><span class="p">);</span> <span class="k">if</span> <span class="n">det_value</span> <span class="o">></span> <span class="n">max_det</span> <span class="n">max_det</span> <span class="p">=</span> <span class="n">det_value</span><span class="p">;</span> <span class="n">init_perm</span> <span class="p">=</span> <span class="n">matrix</span><span class="p">;</span> <span class="k">end</span> <span class="k">end</span>

matrix = Partition[#, 3] & /@ list;
answer = Det /@ matrix;
m = Max[answer];
pos = Flatten[Position[answer, m]];
matrix[[#]] & /@ pos 贴个毫无技术含量暴力程度max的python版。。。
import itertools import time def max_matrix(): begin = time.time() elements = [1, 2, 3, 4, 5, 6, 7, 8, 9] maxdet = 0 maxmat = [] for i in itertools.permutations(elements, 9): det = i[0] * i[4] * i[8] + i[1] * i[5] * i[6] + i[2] * i[3] * i[7] - i[2] * i[4] * i[6] - i[1] * i[3] * i[8] - i[0] * i[5] * i[7] if(det > maxdet): maxdet = det maxmat = [] for j in range(0, 9): maxmat.append(i[j]) print "|" + str(maxmat[0]) + " " + str(maxmat[1]) + " " + str(maxmat[2]) + "|" print "|" + str(maxmat[3]) + " " + str(maxmat[4]) + " " + str(maxmat[5]) + "| = " + str(maxdet) print "|" + str(maxmat[6]) + " " + str(maxmat[7]) + " " + str(maxmat[8]) + "|" end = time.time() print str(end - begin) + 's used.' if __name__ == '__main__': max_matrix()
<span class="cp">#include <cstdio></span> <span class="cp">#include <algorithm></span> <span class="k">using</span> <span class="k">namespace</span> <span class="n">std</span><span class="p">;</span> <span class="kt">int</span> <span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[]</span> <span class="o">=</span> <span class="p">{</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">7</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">9</span><span class="p">};</span> <span class="kt">int</span> <span class="nf">main</span><span class="p">()</span> <span class="p">{</span> <span class="k">do</span> <span class="n">ans</span> <span class="o">=</span> <span class="n">max</span><span class="p">(</span><span class="n">ans</span><span class="p">,</span> <span class="n">a</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">])</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">5</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">8</span><span class="p">])</span> <span class="o">+</span> <span class="n">a</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="n">a</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">7</span><span class="p">]</span> <span class="o">-</span> <span class="n">a</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">*</span> <span class="n">a</span><span class="p">[</span><span class="mi">6</span><span class="p">]));</span> <span class="k">while</span> <span class="p">(</span><span class="n">next_permutation</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">9</span><span class="p">));</span> <span class="n">printf</span><span class="p">(</span><span class="s">"%d</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span> <span class="n">ans</span><span class="p">);</span> <span class="p">}</span>
9 4 2
3 8 6
5 1 7
很容易看出思路了。
1.所有数按大小在斜率为-1的对角线上依次排开。(即:987在一条对角线,654在一条,321在一条)很容易看出这是让正向数值最大的方法。
2.对于反向的对角线,排除主对角线之外的任意两个数之和相等,且乘积越大的,相应的主对角线元素越小。(也就是让三个乘积的最大值最小,然后最大的结果再和最小的数相配这样)
但是以上方法仅限于1~9的3x3矩阵,对于其它的矩阵不一定适用。
因为显然这种方法要求正向和负向都只有对角线(或平行于对角线),但是4x4的行列式就开始有拐弯了。。。
然后,我感觉还有三个漏洞,一是贪心法不一定保证正向最大,也不一定保证反向最小,更不一定保证正反向之差最大。(不一定都是漏洞,可能有的是恒成立的)
但是我感觉对3x3的非负矩阵来说,贪心在多数情况下是可以拿到最大值的。
PS:试了很多组数,都是这个解,然后又试了一组[1 2 3 4 5 6 7 8 100],显然答案发生了变化,因为100的权值比8和7大太多,所以负向的时候直接就把2和1给了100。那么这也就证明了贪心法确实有时候得不到最大值。 前面已经有了python,c和MMA的代码了,我来一发matlab的吧
<span class="n">p</span><span class="p">=</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">);</span> <span class="p">[</span><span class="n">n</span><span class="p">,</span><span class="o">~</span><span class="p">]=</span><span class="nb">size</span><span class="p">(</span><span class="n">p</span><span class="p">);</span> <span class="n">z</span><span class="p">=</span><span class="nb">zeros</span><span class="p">(</span><span class="n">n</span><span class="p">,</span><span class="mi">1</span><span class="p">);</span> <span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="n">n</span> <span class="n">z</span><span class="p">(</span><span class="nb">i</span><span class="p">)=</span><span class="n">det</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="nb">i</span><span class="p">,:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span> <span class="k">end</span> <span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">)</span> <span class="n">id</span><span class="p">=</span><span class="nb">find</span><span class="p">(</span><span class="n">z</span><span class="o">==</span><span class="n">max</span><span class="p">(</span><span class="n">z</span><span class="p">));</span> <span class="k">for</span> <span class="nb">i</span><span class="p">=</span><span class="mi">1</span><span class="p">:</span><span class="nb">length</span><span class="p">(</span><span class="n">id</span><span class="p">)</span> <span class="nb">disp</span><span class="p">(</span><span class="nb">reshape</span><span class="p">(</span><span class="n">p</span><span class="p">(</span><span class="n">id</span><span class="p">(</span><span class="nb">i</span><span class="p">),:),</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">));</span> <span class="k">end</span>
<span class="n">p</span> <span class="p">=</span> <span class="nb">reshape</span><span class="p">(</span><span class="nb">perms</span><span class="p">(</span><span class="mi">1</span><span class="p">:</span><span class="mi">9</span><span class="p">),</span><span class="s">''</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">);</span> <span class="n">M</span> <span class="p">=</span> <span class="n">max</span><span class="p">(</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span><span class="mi">3</span><span class="p">)</span><span class="o">-</span><span class="n">sum</span><span class="p">(</span><span class="n">prod</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="mi">3</span><span class="p">),</span><span class="mi">2</span><span class="p">));</span>
直接9!个结果存下来刚正面,0优化
Det[Partition[#, 3]] & /@ Permutations[Range[9]] // Max 412

Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Heiße Themen



Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Wie hört Uvicorn kontinuierlich auf HTTP -Anfragen an? Uvicorn ist ein leichter Webserver, der auf ASGI basiert. Eine seiner Kernfunktionen ist es, auf HTTP -Anfragen zu hören und weiterzumachen ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Wie erstellt in Python ein Objekt dynamisch über eine Zeichenfolge und ruft seine Methoden auf? Dies ist eine häufige Programmieranforderung, insbesondere wenn sie konfiguriert oder ausgeführt werden muss ...

Verwenden Sie Python im Linux -Terminal ...
