在进行无限极分类中最常用的算法就是“递归”,熟悉PHP语言的朋友肯定知道,PHP不擅长递归 ,而且递归次数有限(100次左右,因操作系统和配置而异)。
所以本文将会给大家带来几种不使用递归实现无限级分类的代码。供大家来学习使用。
第一种:
无限级分类在开发中经常使用,例如:部门结构、文章分类。无限级分类的难点在于“输出”和“查询”,例如
将文章分类输出为
查找分类A下面所有分类包含的文章。
1.实现原理
几种常见的实现方法,各有利弊。其中“改进前序遍历树”数据结构,便于输出和查询,但是在移动分类和常规理解上有些复杂。
2.数据结构
<?php $list = array( array('id'=>1, 'fid'=>0, 'title' => '中国'), array('id'=>2, 'fid'=>1, 'title' => '江苏'), array('id'=>3, 'fid'=>1, 'title' => '安徽'), array('id'=>4, 'fid'=>8, 'title' => '江阴'), array('id'=>5, 'fid'=>3, 'title' => '芜湖'), array('id'=>6, 'fid'=>3, 'title' => '合肥'), array('id'=>7, 'fid'=>3, 'title' => '蚌埠'), array('id'=>8, 'fid'=>8, 'title' => '无锡') ); ?>
由于所有的递归均可以使用循环实现,本文根据PHP语言特点编写了一套关于“无限级”分类的函数,相比递归实现而言效率更高。
3.输出ul列表形式
将上述数据输出为下面的HTML
<ul> <li class="first-child"> <p>江苏</p> <ul> <li class="first-child last-child"> <p>无锡</p> <ul> <li class="first-child last-child"> <p>江阴</p> </li> </ul> </li> </ul> </li> <li class="last-child"> <p>安徽</p> <ul> <li class="first-child"><p>芜湖</p></li> <li><p>合肥</p></li> <li class="last-child"><p>蚌埠</p></li> </ul> </li> </ul>
这种HTML结构在前端使用(使用JavaScript和CSS构造可折叠树)十分方便。具体实现程序如下:
<ul><?php echo get_tree_ul($list, 1); ?></ul>
4.输出option列表形式
<select> <option value="2">江苏</option> <option value="8"> 无锡</option> <option value="4"> 江阴</option> <option value="3">安徽</option> <option value="5"> 芜湖</option> <option value="6"> 合肥</option> <option value="7"> 蚌埠</option> </select>
具体实现程序如下:
<select> <?php // get_tree_option()返回数组,并为每个元素增加了“深度”(即depth)列,直接输出即可 $options = get_tree_option($list, 1); foreach($options as $op) { echo '<option value="' . $op['id'] .'">' . str_repeat(" ", $op['depth'] * 4) . $op['title'] . '<;/option>'; } ?> <;/select>
5. 查找某一分类的所有子类
<?php $children = get_tree_child($list, 0); echo implode(',', $children); // 输出:1,3,2,7,6,5,8,4 ?>
6. 查找某一分类的所有父类
<?php $children = get_tree_parent($list, 4); echo implode(',', $children); //8, 2, 10 ?>
7. 相关函数
<?php function get_tree_child($data, $fid) { $result = array(); $fids = array($fid); do { $cids = array(); $flag = false; foreach($fids as $fid) { for($i = count($data) - 1; $i >=0 ; $i--) { $node = $data[$i]; if($node['fid'] == $fid) { array_splice($data, $i , 1); $result[] = $node['id']; $cids[] = $node['id']; $flag = true; } } } $fids = $cids; } while($flag === true); return $result; } function get_tree_parent($data, $id) { $result = array(); $obj = array(); foreach($data as $node) { $obj[$node['id']] = $node; } $value = isset($obj[$id]) ? $obj[$id] : null; while($value) { $id = null; foreach($data as $node) { if($node['id'] == $value['fid']) { $id = $node['id']; $result[] = $node['id']; break; } } if($id === null) { $result[] = $value['fid']; } $value = isset($obj[$id]) ? $obj[$id] : null; } unset($obj); return $result; } function get_tree_ul($data, $fid) { $stack = array($fid); $child = array(); $added_left = array(); $added_right= array(); $html_left = array(); $html_right = array(); $obj = array(); $loop = 0; foreach($data as $node) { $pid = $node['fid']; if(!isset($child[$pid])) { $child[$pid] = array(); } array_push($child[$pid], $node['id']); $obj[$node['id']] = $node; } while (count($stack) > 0) { $id = $stack[0]; $flag = false; $node = isset($obj[$id]) ? $obj[$id] : null; if (isset($child[$id])) { $cids = $child[$id]; $length = count($cids); for($i = $length - 1; $i >= 0; $i--) { array_unshift($stack, $cids[$i]); } $obj[$cids[$length - 1]]['isLastChild'] = true; $obj[$cids[0]]['isFirstChild'] = true; $flag = true; } if ($id != $fid && $node && !isset($added_left[$id])) { if(isset($node['isFirstChild']) && isset($node['isLastChild'])) { $html_left[] = '<li class="first-child last-child">'; } else if(isset($node['isFirstChild'])) { $html_left[] = '<li class="first-child">'; } else if(isset($node['isLastChild'])) { $html_left[] = '<li class="last-child">'; } else { $html_left[] = '<li>'; } $html_left[] = ($flag === true) ? "<p>{$node['title']}</p><ul>" : "<p>{$node['title']}</p>"; $added_left[$id] = true; } if ($id != $fid && $node && !isset($added_right[$id])) { $html_right[] = ($flag === true) ? '</ul></li>' : '</li>'; $added_right[$id] = true; } if ($flag == false) { if($node) { $cids = $child[$node['fid']]; for ($i = count($cids) - 1; $i >= 0; $i--) { if ($cids[$i] == $id) { array_splice($child[$node['fid']], $i, 1); break; } } if(count($child[$node['fid']]) == 0) { $child[$node['fid']] = null; } } array_push($html_left, array_pop($html_right)); array_shift($stack); } $loop++; if($loop > 5000) return $html_left; } unset($child); unset($obj); return implode('', $html_left); } function get_tree_option($data, $fid) { $stack = array($fid); $child = array(); $added = array(); $options = array(); $obj = array(); $loop = 0; $depth = -1; foreach($data as $node) { $pid = $node['fid']; if(!isset($child[$pid])) { $child[$pid] = array(); } array_push($child[$pid], $node['id']); $obj[$node['id']] = $node; } while (count($stack) > 0) { $id = $stack[0]; $flag = false; $node = isset($obj[$id]) ? $obj[$id] : null; if (isset($child[$id])) { for($i = count($child[$id]) - 1; $i >= 0; $i--) { array_unshift($stack, $child[$id][$i]); } $flag = true; } if ($id != $fid && $node && !isset($added[$id])) { $node['depth'] = $depth; $options[] = $node; $added[$id] = true; } if($flag == true){ $depth++; } else { if($node) { for ($i = count($child[$node['fid']]) - 1; $i >= 0; $i--) { if ($child[$node['fid']][$i] == $id) { array_splice($child[$node['fid']], $i, 1); break; } } if(count($child[$node['fid']]) == 0) { $child[$node['fid']] = null; $depth--; } } array_shift($stack); } $loop++; if($loop > 5000) return $options; } unset($child); unset($obj); return $options; } ?>
第二种:
这是使用TP来制作的无限级分类。
算法复杂度为T(n)=O(2n),只遍历两次数组.
关键代码其实只有一行
$return[$v['pid']]['child'][$v['id']] = &$return[$k];
但是为了实现较为复杂的扩展,这里添加一些额外的信息
//索引要和ID一致,这不是废话么 //pid是父元素 //不要出现死循环嵌套,就是AB互为父子 //不要出现相同name $list[0]=['id'=>0,'pid'=>-1,'name'=>'A@0'];//-1用于后面的根目录判断 $list[1]=['id'=>1,'pid'=>0,'name'=>'A@1']; $list[2]=['id'=>2,'pid'=>0,'name'=>'A@2']; $list[3]=['id'=>3,'pid'=>2,'name'=>'A@3']; $list[4]=['id'=>4,'pid'=>3,'name'=>'A@4']; $list[5]=['id'=>5,'pid'=>0,'name'=>'A@5']; $list[6]=['id'=>6,'pid'=>1,'name'=>'A@6']; //先初始化目录 $return=[]; foreach($list as $v) $return[$v['name']]=[]; //将每个目录与父目录进行拼接,并找到根目录 foreach($list as $k=>$v) { if($v['pid']>=0) $return[$list[$v['pid']]['name']][$v['name']]=&$return[$v['name']]; else $parent=$v['name']; } //打印根目录 print_r($return[$parent]);
输出1
Array( [A@1] => Array ( [A@6] => Array ( ) ) [A@2] => Array ( [A@3] => Array ( [A@4] => Array ( ) ) ) [A@5] => Array ( ) )
代码2
/** * Created by PhpStorm. * User: Nikaidou-Shinku * Date: 16/9/14 * Time: 17:12 */ $list[] = ['id' => 0, 'pid' => -1, 'name' => 'A@0'];//-1用于后面的根目录判断 $list[] = ['id' => 1, 'pid' => 0, 'name' => 'A@1']; $list[] = ['id' => 2, 'pid' => 0, 'name' => 'A@2']; $list[] = ['id' => 3, 'pid' => 2, 'name' => 'A@3']; $list[] = ['id' => 4, 'pid' => 3, 'name' => 'A@4']; $list[] = ['id' => 5, 'pid' => 0, 'name' => 'A@5']; $list[] = ['id' => 6, 'pid' => 1, 'name' => 'A@6']; //先初始化目录 $return = []; $parent = ''; foreach ($list as $v) $return[$v['id']] = [ 'id' => $v['id'], 'name' => $v['name'], 'pid' => $v['pid'], 'child' => '', ]; //将每个目录与父目录进行拼接,并找到根目录 foreach ($return as $k => $v) { if ($v['pid'] >= 0) $return[$v['pid']]['child'][$v['id']] = &$return[$k]; else $parent = &$return[$k]; } //打印根目录 var_export($parent);
输出2
$aa=[ 'id' => 0, 'name' => 'A@0', 'pid' => -1, 'child' => [ 1 => [ 'id' => 1, 'name' => 'A@1', 'pid' => 0, 'child' => [ 6 => [ 'id' => 6, 'name' => 'A@6', 'pid' => 1, 'child' => '', ], ], ], 2 => [ 'id' => 2, 'name' => 'A@2', 'pid' => 0, 'child' => [ 3 => [ 'id' => 3, 'name' => 'A@3', 'pid' => 2, 'child' => [ 4 => [ 'id' => 4, 'name' => 'A@4', 'pid' => 3, 'child' => '', ], ], ], ], ], 5 => [ 'id' => 5, 'name' => 'A@5', 'pid' => 0, 'child' => '', ], ], ]
第三种:
接下来这个无限级分类更为的简单。可以简化成使用5行代码就可以完成。
function generateTree($items){ $tree = array(); foreach($items as $item){ if(isset($items[$item['pid']])){ $items[$item['pid']]['son'][] = &$items[$item['id']]; }else{ $tree[] = &$items[$item['id']]; } } return $tree; } $items = array( 1 => array('id' => 1, 'pid' => 0, 'name' => '安徽省'), 2 => array('id' => 2, 'pid' => 0, 'name' => '浙江省'), 3 => array('id' => 3, 'pid' => 1, 'name' => '合肥市'), 4 => array('id' => 4, 'pid' => 3, 'name' => '长丰县'), 5 => array('id' => 5, 'pid' => 1, 'name' => '安庆市'), ); print_r(generateTree($items));
可以看到下面打印的结果:
Array ( [0] => Array ( [id] => 1 [pid] => 0 [name] => 安徽省 [son] => Array ( [0] => Array ( [id] => 3 [pid] => 1 [name] => 合肥市 [son] => Array ( [0] => Array ( [id] => 4 [pid] => 3 [name] => 长丰县 ) ) ) [1] => Array ( [id] => 5 [pid] => 1 [name] => 安庆市 ) ) ) [1] => Array ( [id] => 2 [pid] => 0 [name] => 浙江省 ) )
上面生成树方法还可以精简到5行:
function generateTree($items){ foreach($items as $item) $items[$item['pid']]['son'][$item['id']] = &$items[$item['id']]; return isset($items[0]['son']) ? $items[0]['son'] : array(); }
但是上面的代码有个问题就是对数据库结构有点要求,每个节点要指明其父节点是谁,虽然实用性不高,但是还是能给大家带来启发,学习下不同类型的无限级分类。