Kurs Dazwischenliegend 11393
Kurseinführung:„Selbststudium IT-Netzwerk-Linux-Lastausgleich-Video-Tutorial“ implementiert hauptsächlich den Linux-Lastausgleich durch Ausführen von Skriptvorgängen im Web, LVS und Linux unter Nagin.
Kurs Fortschrittlich 17704
Kurseinführung:„Shang Xuetang MySQL Video Tutorial“ führt Sie in den Prozess von der Installation bis zur Verwendung der MySQL-Datenbank ein und stellt die spezifischen Vorgänge jedes Links im Detail vor.
Kurs Fortschrittlich 11399
Kurseinführung:„Brothers Band Front-End-Beispiel-Display-Video-Tutorial“ stellt jedem Beispiele für HTML5- und CSS3-Technologien vor, damit jeder die Verwendung von HTML5 und CSS3 besser beherrschen kann.
Javascript – Prinzipien der Gesichtsveränderungstechnologie in Webfotos
2017-06-20 10:07:05 0 1 2895
2023-09-05 11:18:47 0 1 893
Experimentieren Sie mit der Sortierung nach Abfragelimit
2023-09-05 14:46:42 0 1 778
2023-09-05 15:18:28 0 1 654
PHP-Volltextsuchfunktion mit den Operatoren AND, OR und NOT
2023-09-05 15:06:32 0 1 625
Kurseinführung:Bei der Merkmalsextraktion handelt es sich um den Prozess der Datendimensionalitätsreduzierung, der die Menge der Originaldaten reduziert und die Nutzbarkeit der Daten durch Optimierung verbessert. Die Verarbeitung großer Datensätze erfordert erhebliche Rechenressourcen, und die Merkmalsextraktion kann die zu verarbeitende Datenmenge effektiv reduzieren und gleichzeitig den ursprünglichen Datensatz dennoch genau beschreiben. Bei der Merkmalsextraktion handelt es sich um den Prozess der Umwandlung von Rohdaten in digitale Merkmale unter Beibehaltung wichtiger Informationen. Nach der Verarbeitung können genauere Ergebnisse erzielt werden. Im Gegensatz zur Feature-Auswahl, bei der eine Teilmenge der ursprünglichen Features erhalten bleibt, werden bei der Feature-Extraktion völlig neue Features erstellt. Wie führt man eine Merkmalsextraktion durch? Die Merkmalsextraktion kann manuell oder automatisch erfolgen. Bei der manuellen Merkmalsextraktion müssen für ein bestimmtes Problem relevante Merkmale identifiziert und beschrieben und Methoden zum Extrahieren dieser Merkmale implementiert werden. Bei der automatischen Merkmalsextraktion werden spezielle oder tiefgreifende Algorithmen verwendet
2024-01-23 Kommentar 0 545
Kurseinführung:Der flache Merkmalsextraktor ist ein Merkmalsextraktor, der sich auf einer flacheren Schicht im neuronalen Deep-Learning-Netzwerk befindet. Seine Hauptfunktion besteht darin, Eingabedaten in eine hochdimensionale Merkmalsdarstellung für nachfolgende Modellschichten umzuwandeln, um Aufgaben wie Klassifizierung und Regression auszuführen. Flache Merkmalsextraktoren nutzen Faltungs- und Pooling-Operationen in Faltungs-Neuronalen Netzen (CNN), um eine Merkmalsextraktion zu erreichen. Durch Faltungsoperationen können flache Merkmalsextraktoren lokale Merkmale von Eingabedaten erfassen, während Pooling-Operationen die Dimensionalität von Merkmalen reduzieren und wichtige Merkmalsinformationen beibehalten können. Auf diese Weise können flache Feature-Extraktoren Rohdaten in aussagekräftigere Feature-Darstellungen umwandeln und so die Leistung nachfolgender Aufgaben verbessern. Die Faltungsoperation ist eine der Kernoperationen in Faltungs-Neuronalen Netzen (CNN). Es führt eine Faltungsoperation an den Eingabedaten mit einer Reihe von Faltungskernen durch
2024-01-22 Kommentar 0 776
Kurseinführung:Problem der Merkmalsauswahl bei der feinkörnigen Bildklassifizierung Die feinkörnige Bildklassifizierung ist in den letzten Jahren ein wichtiges und herausforderndes Problem im Bereich Computer Vision, bei dem der Klassifikator in der Lage sein muss, ähnliche Objekte oder Szenen zu unterscheiden. Bei der Lösung dieses Problems ist die Merkmalsauswahl ein entscheidender Schritt, da geeignete Merkmale die detaillierten Informationen im Bild genau darstellen können. Die Bedeutung des Merkmalsauswahlproblems bei der feinkörnigen Bildklassifizierung liegt darin, wie für die Klassifizierungsaufgabe relevante Merkmale auf hoher Ebene aus einer großen Anzahl von Merkmalen auf niedriger Ebene ausgewählt werden. Herkömmliche Methoden zur Merkmalsauswahl basieren häufig auf manuell definierten Regeln oder Erfahrungen
2023-10-09 Kommentar 0 1317
Kurseinführung:Dieser Artikel vermittelt Ihnen relevantes Wissen über Python und stellt detailliert die Methoden zum Extrahieren von vier verschiedenen Textmerkmalen in Python vor, darunter die Extraktion von Wörterbuchtextmerkmalen, die Extraktion von englischen Textmerkmalen, die Extraktion von chinesischen Textmerkmalen und die Extraktion von TF-IDF-Textmerkmalen Interessierte können mehr erfahren.
2022-08-31 Kommentar 0 2621