Das Problem, dass die Funktion find_ previous_sibling nicht ordnungsgemäß funktioniert, wenn BeautifulSoup für das Web-Crawling verwendet wird
P粉187160883
P粉187160883 2023-09-19 11:33:53
0
1
700

Ich versuche, mehrere Werte von der Website (https://carone.com.uy/autos-usados-y-0km?p=21) zu extrahieren. Einige funktionieren gut, andere jedoch nicht. Ich kann beispielsweise den Namen, das Modell, den Preis und die Kraftstoffart extrahieren, kann aber die Felder „Jahr“ oder „Kilometer“ nicht korrekt extrahieren. Der Code gibt als Wert immer „N/A“ zurück.

Das ist der Code, den ich verwende:

import pandas as pd
from datetime import date
import os
import socket
import requests
from bs4 import BeautifulSoup

def scrape_product_data(url):
    try:
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
        }

        product_data = []

        # Make the request to get the HTML content
        response = requests.get(url, headers=headers)
        response.raise_for_status()  # Check if the request was successful

        soup = BeautifulSoup(response.text, 'html.parser')
        product_elements = soup.find_all('div', class_='product-item-info')
        for product_element in product_elements:
            # Extract product name, price, model, and attributes as before (same code as previous version)
            product_name_element = product_element.select_one('p.carone-car-info-data-brand.cursor-pointer')
            product_name = product_name_element.text.strip() if product_name_element else "N/A"

            product_price_element = product_element.find('span', class_='price')
            product_price = product_price_element.text.strip() if product_price_element else "N/A"

            product_model_element = product_element.select_one('p.carone-car-info-data-model')
            product_model = product_model_element.get('title').strip() if product_model_element else "N/A"

            # Extract product attributes
            attributes_div = product_element.find('div', class_='carone-car-attributes')
            
            year_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Año')
            year_value = year_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if year_element else "N/A"

            kilometers_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Kilómetros')
            kilometers_value = kilometers_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if kilometers_element else "N/A"

            fuel_element = attributes_div.find('p', class_='carone-car-attribute-title', text='Combustible')
            fuel_value = fuel_element.find_previous_sibling('p', class_='carone-car-attribute-value').text if fuel_element else "N/A"

            # Append product data as a tuple (name, price, model, year, kilometers, fuel) to the list
            product_data.append((product_name, product_price, product_model, year_value, kilometers_value, fuel_value))

Das Ergebnis sieht so aus: Geben Sie hier eine Bildbeschreibung ein

Ich verstehe nicht, warum der genannte Wert immer „N/A“ erhält, während die anderen gut funktionieren, die Methode ist die gleiche.

P粉187160883
P粉187160883

Antworte allen(1)
P粉759457420

问题是,该网站在元素的文本中使用的不是Kilómetros,而是Kil&oacutemetros(年龄也是同样的情况):

def scrape_product_data(url):
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
    }

    product_data = []

    response = requests.get(url, headers=headers)
    response.raise_for_status()

    soup = BeautifulSoup(response.text, "html.parser")
    product_elements = soup.find_all("div", class_="product-item-info")
    for product_element in product_elements:
        product_name_element = product_element.select_one(
            "p.carone-car-info-data-brand.cursor-pointer"
        )
        product_name = (
            product_name_element.text.strip() if product_name_element else "N/A"
        )

        product_price_element = product_element.find("span", class_="price")
        product_price = (
            product_price_element.text.strip() if product_price_element else "N/A"
        )

        product_model_element = product_element.select_one(
            "p.carone-car-info-data-model"
        )
        product_model = (
            product_model_element.get("title").strip()
            if product_model_element
            else "N/A"
        )

        attributes_div = product_element.find("div", class_="carone-car-attributes")

        year_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Año"
        )
        year_value = (
            year_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if year_element
            else "N/A"
        )

        kilometers_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Kilómetros"
        )
        kilometers_value = (
            kilometers_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if kilometers_element
            else "N/A"
        )

        fuel_element = attributes_div.find(
            "p", class_="carone-car-attribute-title", string="Combustible"
        )
        fuel_value = (
            fuel_element.find_previous_sibling(
                "p", class_="carone-car-attribute-value"
            ).text
            if fuel_element
            else "N/A"
        )

        product_data.append(
            (
                product_name,
                product_price,
                product_model,
                year_value,
                kilometers_value,
                fuel_value,
            )
        )

    return pd.DataFrame(
        product_data, columns=["Name", "Price", "Model", "Year", "KM", "Fuel"]
    )


df = scrape_product_data("https://carone.com.uy/autos-usados-y-0km?p=2")
print(df)

打印结果:

                 Name      Price                                 Model  Year      KM   Fuel
0        Renault Kwid  US$12.000               KWID 1.0 INTENSE TACTIL  2018  82.390  NAFTA
1      Chevrolet Onix  US$20.800                   NEW ONIX 1.0T RS MT  2021  46.000  NAFTA
2        Suzuki Swift  US$17.800                 NUEVO SWIFT 1.2 GL AT  2020  63.641  NAFTA
3           Fiat Toro  US$23.800                TORO 1.8 FREEDOM DC MT  2021  15.330  NAFTA
4       Renault Oroch  US$26.300  NEW OROCH INTENS OUTSIDER 1.3T DC AT  2023  21.360  NAFTA
5     Renault Stepway  US$15.100                 STEPWAY PRIVILEGE 1.6  2017  60.010  NAFTA
6        Renault Kwid  US$13.100                         KWID 1.0 LIFE  2022      14  NAFTA
7      Chevrolet Onix  US$22.800              NEW ONIX 1.0T PREMIER AT  2021  14.780  NAFTA
8   Nissan SENTRA B18  US$34.000           SENTRA B18 2.0 EXCLUSIVE AT  2022  30.430  NAFTA
9        Renault Kwid  US$13.500                   KWID 1.0 INTENSE MT  2020  37.660  NAFTA
10  Chevrolet Tracker  US$16.300                TRACKER 1.8 LTZ 4X4 AT  2014  91.689  NAFTA
11     Chevrolet Onix  US$18.600            NEW ONIX PLUS 1.2 LS 4P MT  2022  24.658  NAFTA
Beliebte Tutorials
Mehr>
Neueste Downloads
Mehr>
Web-Effekte
Quellcode der Website
Website-Materialien
Frontend-Vorlage
Über uns Haftungsausschluss Sitemap
Chinesische PHP-Website:Online-PHP-Schulung für das Gemeinwohl,Helfen Sie PHP-Lernenden, sich schnell weiterzuentwickeln!