递归解决无限级分类的问题
小弟手中有分类3406条,存在category表中。现在用递归解决分类,做成select,如下图:
下面是PHP代码,但是生成select后有错误:
<code>// $result是从数据库中读出的二维数组 $result = array(); while (($row = $info->fetch_array(MYSQLI_ASSOC)) != false) { // 改变数组的索引为分类的id $result[$row['id']] = $row; } $str = ''; $str .= "<select id="category">"; foreach ($result as $value) { if ($value['parent_id'] == 0) { $str .= "<option id="{$value[">{$value['title']}</option>"; $str .= get_children($value['id'], $result, 1); } } $str .= "</select>"; function get_children($id, &$result, $index) { $str = ''; foreach ($result as $key => $value) { if ($id == $value['parent_id']) { $str .= "<option id="{$value[">".str_repeat('---', $index)."{$value['title']}</option>"; $str .= get_children($value['id'], $result, $index + 1); unset($result[$value['id']]); // 存在并且去掉这个以为数组 //echo count($result).'<br>'; } } return $str; } // 打印出select echo $str; </code>
上面代码中,去掉unset执行最后的结果是对的,但是执行时间一般在八九秒。我的想法是存在这一条后把这一条从result结果集中去掉,这样的话以后循环的时候减少循环的次数,然后就能减少执行的时间,但是执行的结果是不对的,只存在省下面的一个地市,其余的地市没有了,研究了半天,也没有发现哪里错,请大神指正。
PS: 1。第一次发帖,不怎么会用,请谅解小弟。
2。有没有更好的办法递归3400多个分类。。
3.谢谢。。
回复内容:
小弟手中有分类3406条,存在category表中。现在用递归解决分类,做成select,如下图:
下面是PHP代码,但是生成select后有错误:
<code>// $result是从数据库中读出的二维数组 $result = array(); while (($row = $info->fetch_array(MYSQLI_ASSOC)) != false) { // 改变数组的索引为分类的id $result[$row['id']] = $row; } $str = ''; $str .= "<select id="category">"; foreach ($result as $value) { if ($value['parent_id'] == 0) { $str .= "<option id="{$value[">{$value['title']}</option>"; $str .= get_children($value['id'], $result, 1); } } $str .= "</select>"; function get_children($id, &$result, $index) { $str = ''; foreach ($result as $key => $value) { if ($id == $value['parent_id']) { $str .= "<option id="{$value[">".str_repeat('---', $index)."{$value['title']}</option>"; $str .= get_children($value['id'], $result, $index + 1); unset($result[$value['id']]); // 存在并且去掉这个以为数组 //echo count($result).'<br>'; } } return $str; } // 打印出select echo $str; </code>
上面代码中,去掉unset执行最后的结果是对的,但是执行时间一般在八九秒。我的想法是存在这一条后把这一条从result结果集中去掉,这样的话以后循环的时候减少循环的次数,然后就能减少执行的时间,但是执行的结果是不对的,只存在省下面的一个地市,其余的地市没有了,研究了半天,也没有发现哪里错,请大神指正。
PS: 1。第一次发帖,不怎么会用,请谅解小弟。
2。有没有更好的办法递归3400多个分类。。
3.谢谢。。
关系数据库中的无限深度树状关系的表示有两种常见方案:
- edge list tree(又写作adjacency list,即邻接表)
一行的表示类似于(子元素id, 父元素id)
- nested set tree(即左右值)
一行的表示类似于(当前元素左值, 当前元素右值)
相信楼主用的是前者,这样的坏处是需要递归查询。而后者更易于查询,一条sql即可搞定,见@沙渺 的这篇文章。
针对lz的问题,如果嵌套关系表示使用的是左右值方法,拿到全量数据的前提下,在PHP中也可以用O(n)方式迭代数据得到所有需要的子节点和深度等数据,非常简单。
如果只是需要在前端使用这些树状数据,那么公子的方案是最简单的,比用数据库邻接表、服务器端递归遍历简单多了。
关于nested set:
- WIKI: Nested Set Model
- Nested Set的主要使用流程(常用查询,增删节点的方式等)
- nested set与adjacency list效率比较,以及如何使用R-tree索引进行进一步提速
- 一个把edge list转化为nested set的mysql存储过程
这种东西干嘛要存到数据库中啊 =_=! http://www.soulteary.com/2013/05/10/jquery-city-select.html

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The main reasons why you cannot log in to MySQL as root are permission problems, configuration file errors, password inconsistent, socket file problems, or firewall interception. The solution includes: check whether the bind-address parameter in the configuration file is configured correctly. Check whether the root user permissions have been modified or deleted and reset. Verify that the password is accurate, including case and special characters. Check socket file permission settings and paths. Check that the firewall blocks connections to the MySQL server.

When MySQL modifys table structure, metadata locks are usually used, which may cause the table to be locked. To reduce the impact of locks, the following measures can be taken: 1. Keep tables available with online DDL; 2. Perform complex modifications in batches; 3. Operate during small or off-peak periods; 4. Use PT-OSC tools to achieve finer control.

Data Integration Simplification: AmazonRDSMySQL and Redshift's zero ETL integration Efficient data integration is at the heart of a data-driven organization. Traditional ETL (extract, convert, load) processes are complex and time-consuming, especially when integrating databases (such as AmazonRDSMySQL) with data warehouses (such as Redshift). However, AWS provides zero ETL integration solutions that have completely changed this situation, providing a simplified, near-real-time solution for data migration from RDSMySQL to Redshift. This article will dive into RDSMySQL zero ETL integration with Redshift, explaining how it works and the advantages it brings to data engineers and developers.

1. Use the correct index to speed up data retrieval by reducing the amount of data scanned select*frommployeeswherelast_name='smith'; if you look up a column of a table multiple times, create an index for that column. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

MySQL can handle multiple concurrent connections and use multi-threading/multi-processing to assign independent execution environments to each client request to ensure that they are not disturbed. However, the number of concurrent connections is affected by system resources, MySQL configuration, query performance, storage engine and network environment. Optimization requires consideration of many factors such as code level (writing efficient SQL), configuration level (adjusting max_connections), hardware level (improving server configuration).

MySQL cannot run directly on Android, but it can be implemented indirectly by using the following methods: using the lightweight database SQLite, which is built on the Android system, does not require a separate server, and has a small resource usage, which is very suitable for mobile device applications. Remotely connect to the MySQL server and connect to the MySQL database on the remote server through the network for data reading and writing, but there are disadvantages such as strong network dependencies, security issues and server costs.

MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.
