Hive分析窗口函数(四) LAG,LEAD,FIRST_VALUE,LAST_VALUE
1.LAG功能是什么? 2.LEAD与LAG功能有什么相的地方那个? 3.FIRST_VALUE与LAST_VALUE分别完成什么功能? 继续学习这四个分析函数。注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备: 水电费 cookie1,2015-04-10 10:00:02,url2
1.LAG功能是什么?2.LEAD与LAG功能有什么相似的地方那个?
3.FIRST_VALUE与LAST_VALUE分别完成什么功能?
继续学习这四个分析函数。 注意: 这几个函数不支持WINDOW子句。 Hive版本为 apache-hive-0.13.1 数据准备:
水电费
cookie1,2015-04-10 10:00:02,url2 cookie1,2015-04-10 10:00:00,url1 cookie1,2015-04-10 10:03:04,1url3 cookie1,2015-04-10 10:50:05,url6 cookie1,2015-04-10 11:00:00,url7 cookie1,2015-04-10 10:10:00,url4 cookie1,2015-04-10 10:50:01,url5 cookie2,2015-04-10 10:00:02,url22 cookie2,2015-04-10 10:00:00,url11 cookie2,2015-04-10 10:03:04,1url33 cookie2,2015-04-10 10:50:05,url66 cookie2,2015-04-10 11:00:00,url77 cookie2,2015-04-10 10:10:00,url44 cookie2,2015-04-10 10:50:01,url55 CREATE EXTERNAL TABLE lxw1234 ( cookieid string, createtime string, --页面访问时间 url STRING --被访问页面 ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' stored as textfile location '/tmp/lxw11/'; hive> select * from lxw1234; OK cookie1 2015-04-10 10:00:02 url2 cookie1 2015-04-10 10:00:00 url1 cookie1 2015-04-10 10:03:04 1url3 cookie1 2015-04-10 10:50:05 url6 cookie1 2015-04-10 11:00:00 url7 cookie1 2015-04-10 10:10:00 url4 cookie1 2015-04-10 10:50:01 url5 cookie2 2015-04-10 10:00:02 url22 cookie2 2015-04-10 10:00:00 url11 cookie2 2015-04-10 10:03:04 1url33 cookie2 2015-04-10 10:50:05 url66 cookie2 2015-04-10 11:00:00 url77 cookie2 2015-04-10 10:10:00 url44 cookie2 2015-04-10 10:50:01 url55
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time, LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time FROM lxw1234; cookieid createtime url rn last_1_time last_2_time ------------------------------------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 1970-01-01 00:00:00 NULL cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:00:00 NULL cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:00:02 2015-04-10 10:00:00 cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:03:04 2015-04-10 10:00:02 cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:10:00 2015-04-10 10:03:04 cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 10:50:01 2015-04-10 10:10:00 cookie1 2015-04-10 11:00:00 url7 7 2015-04-10 10:50:05 2015-04-10 10:50:01 cookie2 2015-04-10 10:00:00 url11 1 1970-01-01 00:00:00 NULL cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:00:00 NULL cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:00:02 2015-04-10 10:00:00 cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:03:04 2015-04-10 10:00:02 cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:10:00 2015-04-10 10:03:04 cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 10:50:01 2015-04-10 10:10:00 cookie2 2015-04-10 11:00:00 url77 7 2015-04-10 10:50:05 2015-04-10 10:50:01 last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00' cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00 cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02 cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01 last_2_time: 指定了往上第2行的值,为指定默认值 cookie1第一行,往上2行为NULL cookie1第二行,往上2行为NULL cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02 cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01
LEAD
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time, LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time FROM lxw1234; cookieid createtime url rn next_1_time next_2_time ------------------------------------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 2015-04-10 10:00:02 2015-04-10 10:03:04 cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:03:04 2015-04-10 10:10:00 cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:10:00 2015-04-10 10:50:01 cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:50:01 2015-04-10 10:50:05 cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:50:05 2015-04-10 11:00:00 cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 11:00:00 NULL cookie1 2015-04-10 11:00:00 url7 7 1970-01-01 00:00:00 NULL cookie2 2015-04-10 10:00:00 url11 1 2015-04-10 10:00:02 2015-04-10 10:03:04 cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:03:04 2015-04-10 10:10:00 cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:10:00 2015-04-10 10:50:01 cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:50:01 2015-04-10 10:50:05 cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:50:05 2015-04-10 11:00:00 cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 11:00:00 NULL cookie2 2015-04-10 11:00:00 url77 7 1970-01-01 00:00:00 NULL --逻辑与LAG一样,只不过LAG是往上,LEAD是往下。
FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 FROM lxw1234; cookieid createtime url rn first1 --------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 cookie1 2015-04-10 10:00:02 url2 2 url1 cookie1 2015-04-10 10:03:04 1url3 3 url1 cookie1 2015-04-10 10:10:00 url4 4 url1 cookie1 2015-04-10 10:50:01 url5 5 url1 cookie1 2015-04-10 10:50:05 url6 6 url1 cookie1 2015-04-10 11:00:00 url7 7 url1 cookie2 2015-04-10 10:00:00 url11 1 url11 cookie2 2015-04-10 10:00:02 url22 2 url11 cookie2 2015-04-10 10:03:04 1url33 3 url11 cookie2 2015-04-10 10:10:00 url44 4 url11 cookie2 2015-04-10 10:50:01 url55 5 url11 cookie2 2015-04-10 10:50:05 url66 6 url11 cookie2 2015-04-10 11:00:00 url77 7 url11
LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1 FROM lxw1234; cookieid createtime url rn last1 ----------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 cookie1 2015-04-10 10:00:02 url2 2 url2 cookie1 2015-04-10 10:03:04 1url3 3 1url3 cookie1 2015-04-10 10:10:00 url4 4 url4 cookie1 2015-04-10 10:50:01 url5 5 url5 cookie1 2015-04-10 10:50:05 url6 6 url6 cookie1 2015-04-10 11:00:00 url7 7 url7 cookie2 2015-04-10 10:00:00 url11 1 url11 cookie2 2015-04-10 10:00:02 url22 2 url22 cookie2 2015-04-10 10:03:04 1url33 3 1url33 cookie2 2015-04-10 10:10:00 url44 4 url44 cookie2 2015-04-10 10:50:01 url55 5 url55 cookie2 2015-04-10 10:50:05 url66 6 url66 cookie2 2015-04-10 11:00:00 url77 7 url77
如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果
SELECT cookieid, createtime, url, FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2 FROM lxw1234; cookieid createtime url first2 ---------------------------------------------- cookie1 2015-04-10 10:00:02 url2 url2 cookie1 2015-04-10 10:00:00 url1 url2 cookie1 2015-04-10 10:03:04 1url3 url2 cookie1 2015-04-10 10:50:05 url6 url2 cookie1 2015-04-10 11:00:00 url7 url2 cookie1 2015-04-10 10:10:00 url4 url2 cookie1 2015-04-10 10:50:01 url5 url2 cookie2 2015-04-10 10:00:02 url22 url22 cookie2 2015-04-10 10:00:00 url11 url22 cookie2 2015-04-10 10:03:04 1url33 url22 cookie2 2015-04-10 10:50:05 url66 url22 cookie2 2015-04-10 11:00:00 url77 url22 cookie2 2015-04-10 10:10:00 url44 url22 cookie2 2015-04-10 10:50:01 url55 url22 SELECT cookieid, createtime, url, LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2 FROM lxw1234; cookieid createtime url last2 ---------------------------------------------- cookie1 2015-04-10 10:00:02 url2 url5 cookie1 2015-04-10 10:00:00 url1 url5 cookie1 2015-04-10 10:03:04 1url3 url5 cookie1 2015-04-10 10:50:05 url6 url5 cookie1 2015-04-10 11:00:00 url7 url5 cookie1 2015-04-10 10:10:00 url4 url5 cookie1 2015-04-10 10:50:01 url5 url5 cookie2 2015-04-10 10:00:02 url22 url55 cookie2 2015-04-10 10:00:00 url11 url55 cookie2 2015-04-10 10:03:04 1url33 url55 cookie2 2015-04-10 10:50:05 url66 url55 cookie2 2015-04-10 11:00:00 url77 url55 cookie2 2015-04-10 10:10:00 url44 url55 cookie2 2015-04-10 10:50:01 url55 url55
如果想要取分组内排序后最后一个值,则需要变通一下:
SELECT cookieid, createtime, url, ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn, LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1, FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 FROM lxw1234 ORDER BY cookieid,createtime; cookieid createtime url rn last1 last2 ------------------------------------------------------------- cookie1 2015-04-10 10:00:00 url1 1 url1 url7 cookie1 2015-04-10 10:00:02 url2 2 url2 url7 cookie1 2015-04-10 10:03:04 1url3 3 1url3 url7 cookie1 2015-04-10 10:10:00 url4 4 url4 url7 cookie1 2015-04-10 10:50:01 url5 5 url5 url7 cookie1 2015-04-10 10:50:05 url6 6 url6 url7 cookie1 2015-04-10 11:00:00 url7 7 url7 url7 cookie2 2015-04-10 10:00:00 url11 1 url11 url77 cookie2 2015-04-10 10:00:02 url22 2 url22 url77 cookie2 2015-04-10 10:03:04 1url33 3 1url33 url77 cookie2 2015-04-10 10:10:00 url44 4 url44 url77 cookie2 2015-04-10 10:50:01 url55 5 url55 url77 cookie2 2015-04-10 10:50:05 url66 6 url66 url77 cookie2 2015-04-10 11:00:00 url77 7 url77 url77

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Go language provides two dynamic function creation technologies: closure and reflection. closures allow access to variables within the closure scope, and reflection can create new functions using the FuncOf function. These technologies are useful in customizing HTTP routers, implementing highly customizable systems, and building pluggable components.

In C++ function naming, it is crucial to consider parameter order to improve readability, reduce errors, and facilitate refactoring. Common parameter order conventions include: action-object, object-action, semantic meaning, and standard library compliance. The optimal order depends on the purpose of the function, parameter types, potential confusion, and language conventions.

The key to writing efficient and maintainable Java functions is: keep it simple. Use meaningful naming. Handle special situations. Use appropriate visibility.

1. The SUM function is used to sum the numbers in a column or a group of cells, for example: =SUM(A1:J10). 2. The AVERAGE function is used to calculate the average of the numbers in a column or a group of cells, for example: =AVERAGE(A1:A10). 3. COUNT function, used to count the number of numbers or text in a column or a group of cells, for example: =COUNT(A1:A10) 4. IF function, used to make logical judgments based on specified conditions and return the corresponding result.

The advantages of default parameters in C++ functions include simplifying calls, enhancing readability, and avoiding errors. The disadvantages are limited flexibility and naming restrictions. Advantages of variadic parameters include unlimited flexibility and dynamic binding. Disadvantages include greater complexity, implicit type conversions, and difficulty in debugging.

The benefits of functions returning reference types in C++ include: Performance improvements: Passing by reference avoids object copying, thus saving memory and time. Direct modification: The caller can directly modify the returned reference object without reassigning it. Code simplicity: Passing by reference simplifies the code and requires no additional assignment operations.

The difference between custom PHP functions and predefined functions is: Scope: Custom functions are limited to the scope of their definition, while predefined functions are accessible throughout the script. How to define: Custom functions are defined using the function keyword, while predefined functions are defined by the PHP kernel. Parameter passing: Custom functions receive parameters, while predefined functions may not require parameters. Extensibility: Custom functions can be created as needed, while predefined functions are built-in and cannot be modified.

Exception handling in C++ can be enhanced through custom exception classes that provide specific error messages, contextual information, and perform custom actions based on the error type. Define an exception class inherited from std::exception to provide specific error information. Use the throw keyword to throw a custom exception. Use dynamic_cast in a try-catch block to convert the caught exception to a custom exception type. In the actual case, the open_file function throws a FileNotFoundException exception. Catching and handling the exception can provide a more specific error message.
