【原创】MySQL新旧版本ORDERBY处理方法
MySQL 的order by 涉及到三个参数: A. sort_buffer_size 排序缓存。 B. read_rnd_buffer_size 第二次排序缓存。 C. max_length_for_sort_data 带普通列的最大排序约束。 我来简单说下MySQL的排序规则。 假设查询语句select * from tb1 where 1 order by a ;
MySQL 的order by 涉及到三个参数:
A. sort_buffer_size 排序缓存。
B. read_rnd_buffer_size 第二次排序缓存。
C. max_length_for_sort_data 带普通列的最大排序约束。
我来简单说下MySQL的排序规则。
假设查询语句select * from tb1 where 1 order by a ; 字段a没有建立索引;以上三个参数都足够大。
MySQL内部有两种排序规则:
第一种,是普通的排序。这种排序的特点是节省内存,但是最终会对磁盘有一次随机扫描。 大概主要过程如下:
1. 由于没有WHERE条件,所以直接对磁盘进行全表扫描,把字段a以及每行的物理ID(假设为TID)拿出来。然后把所有拿到的记录全部放到sort_buffer_size中进行排序。
2. 根据排好序的TID,从磁盘随机扫描所需要的所有记录,排好序后再次把所有必须的记录放到read_rnd_buffer_size中。
第二种,是冗余排序。这种排序的特点是不需要二次对磁盘进行随机扫描,但是缺点很明显,太浪费内存空间。
跟第一种不同的是,在第一步里拿到的不仅仅是字段a以及TID,而是把所有请求的记录全部拿到后,放到sort_buffer_size中进行排序。这样可以直接从缓存中返回记录给客户端,不用再次从磁盘上获取一次。
从MySQL 5.7 后,对第二种排序进行了打包压缩处理,避免太浪费内存。比如对于varchar(255)来说,实际存储为varchar(3)。那么相比之前的方式节约了好多内存,避免缓存区域不够时,建立磁盘临时表。
以下为简单的演示
mysql> use t_girl; Database changed
三个参数的具体值:
mysql> select truncate(@@sort_buffer_size/1024/1024,2)||'MB' as 'sort_buffer_size',truncate(@@read_rnd_buffer_size/1024/1024,2)||'MB' as read_rnd_buffer_zie,@@max_length_for_sort_data as max_length_for_sort_data; +------------------+---------------------+--------------------------+ | sort_buffer_size | read_rnd_buffer_zie | max_length_for_sort_data | +------------------+---------------------+--------------------------+ | 2.00MB | 2.00MB | 1024 | +------------------+---------------------+--------------------------+ 1 row in set (0.00 sec)
演示表的相关数据:
mysql> select table_name,table_rows,concat(truncate(data_length/1024/1024,2),'MB') as 'table_size' from information_schema.tables where table_name = 't1' and table_schema = 't_girl'; +------------+------------+------------+ | table_name | table_rows | table_size | +------------+------------+------------+ | t1 | 2092640 | 74.60MB | +------------+------------+------------+ 1 row in set (0.00 sec)
开启优化器跟踪:
mysql> SET OPTIMIZER_TRACE="enabled=on",END_MARKERS_IN_JSON=on; Query OK, 0 rows affected (0.00 sec)
从数据字典里面拿到跟踪结果:
mysql> select * from information_schema.optimizer_trace\G *************************** 1. row *************************** QUERY: select * from t1 where id < 10 order by id TRACE: { "steps": [ { "join_preparation": { "select#": 1, "steps": [ { "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`log_time` AS `log_time` from `t1` where (`t1`.`id` < 10) order by `t1`.`id`" } ] /* steps */ } /* join_preparation */ }, { "join_optimization": { "select#": 1, "steps": [ { "condition_processing": { "condition": "WHERE", "original_condition": "(`t1`.`id` < 10)", "steps": [ { "transformation": "equality_propagation", "resulting_condition": "(`t1`.`id` < 10)" }, { "transformation": "constant_propagation", "resulting_condition": "(`t1`.`id` < 10)" }, { "transformation": "trivial_condition_removal", "resulting_condition": "(`t1`.`id` < 10)" } ] /* steps */ } /* condition_processing */ }, { "table_dependencies": [ { "table": "`t1`", "row_may_be_null": false, "map_bit": 0, "depends_on_map_bits": [ ] /* depends_on_map_bits */ } ] /* table_dependencies */ }, { "ref_optimizer_key_uses": [ ] /* ref_optimizer_key_uses */ }, { "rows_estimation": [ { "table": "`t1`", "table_scan": { "rows": 2092640, "cost": 4775 } /* table_scan */ } ] /* rows_estimation */ }, { "considered_execution_plans": [ { "plan_prefix": [ ] /* plan_prefix */, "table": "`t1`", "best_access_path": { "considered_access_paths": [ { "access_type": "scan", "rows": 2.09e6, "cost": 423303, "chosen": true, "use_tmp_table": true } ] /* considered_access_paths */ } /* best_access_path */, "cost_for_plan": 423303, "rows_for_plan": 2.09e6, "sort_cost": 2.09e6, "new_cost_for_plan": 2.52e6, "chosen": true } ] /* considered_execution_plans */ }, { "attaching_conditions_to_tables": { "original_condition": "(`t1`.`id` < 10)", "attached_conditions_computation": [ ] /* attached_conditions_computation */, "attached_conditions_summary": [ { "table": "`t1`", "attached": "(`t1`.`id` < 10)" } ] /* attached_conditions_summary */ } /* attaching_conditions_to_tables */ }, { "clause_processing": { "clause": "ORDER BY", "original_clause": "`t1`.`id`", "items": [ { "item": "`t1`.`id`" } ] /* items */, "resulting_clause_is_simple": true, "resulting_clause": "`t1`.`id`" } /* clause_processing */ }, { "refine_plan": [ { "table": "`t1`", "access_type": "table_scan" } ] /* refine_plan */ } ] /* steps */ } /* join_optimization */ }, { "join_execution": { "select#": 1, "steps": [ { "filesort_information": [ { "direction": "asc", "table": "`t1`", "field": "id" } ] /* filesort_information */, "filesort_priority_queue_optimization": { "usable": false, "cause": "not applicable (no LIMIT)" } /* filesort_priority_queue_optimization */, "filesort_execution": [ ] /* filesort_execution */, "filesort_summary": { "rows": 62390, "examined_rows": 2097152, "number_of_tmp_files": 0, "sort_buffer_size": 2097152, "sort_mode": "<sort_key, additional_fields>" } /* filesort_summary */ } ] /* steps */ } /* join_execution */ } ] /* steps */ } MISSING_BYTES_BEYOND_MAX_MEM_SIZE: 0 INSUFFICIENT_PRIVILEGES: 0 1 row in set (0.00 sec) mysql>
其中以上红色部分
其他的两种

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



There are many reasons why MySQL startup fails, and it can be diagnosed by checking the error log. Common causes include port conflicts (check port occupancy and modify configuration), permission issues (check service running user permissions), configuration file errors (check parameter settings), data directory corruption (restore data or rebuild table space), InnoDB table space issues (check ibdata1 files), plug-in loading failure (check error log). When solving problems, you should analyze them based on the error log, find the root cause of the problem, and develop the habit of backing up data regularly to prevent and solve problems.

MySQL uses shared locks and exclusive locks to manage concurrency, providing three lock types: table locks, row locks and page locks. Row locks can improve concurrency, and use the FOR UPDATE statement to add exclusive locks to rows. Pessimistic locks assume conflicts, and optimistic locks judge the data through the version number. Common lock table problems manifest as slow querying, use the SHOW PROCESSLIST command to view the queries held by the lock. Optimization measures include selecting appropriate indexes, reducing transaction scope, batch operations, and optimizing SQL statements.

In MySQL database operations, string processing is an inevitable link. The SUBSTRING_INDEX function is designed for this, which can efficiently extract substrings based on separators. SUBSTRING_INDEX function application example The following example shows the flexibility and practicality of the SUBSTRING_INDEX function: Extract specific parts from the URL For example, extract domain name: SELECTSUBSTRING_INDEX('www.mysql.com','.',2); Extract file extension to easily get file extension: SELECTSUBSTRING_INDEX('file.pdf','.',-1); Processing does not exist

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

The MySQL primary key cannot be empty because the primary key is a key attribute that uniquely identifies each row in the database. If the primary key can be empty, the record cannot be uniquely identifies, which will lead to data confusion. When using self-incremental integer columns or UUIDs as primary keys, you should consider factors such as efficiency and space occupancy and choose an appropriate solution.

For production environments, a server is usually required to run MySQL, for reasons including performance, reliability, security, and scalability. Servers usually have more powerful hardware, redundant configurations and stricter security measures. For small, low-load applications, MySQL can be run on local machines, but resource consumption, security risks and maintenance costs need to be carefully considered. For greater reliability and security, MySQL should be deployed on cloud or other servers. Choosing the appropriate server configuration requires evaluation based on application load and data volume.

MySQL can return JSON data. The JSON_EXTRACT function extracts field values. For complex queries, you can consider using the WHERE clause to filter JSON data, but pay attention to its performance impact. MySQL's support for JSON is constantly increasing, and it is recommended to pay attention to the latest version and features.
