with as 递归
withas递归 id|parentid|Code 1|null|S1409110001 2|1|S1409170004 3|2|S1409170006 无 with accountrp AS( SELECT TOP 1 uid,uaccountrpid,ccode from t_accountrp where ccode='S1409170006' UNION ALLSELECT t_accountrp.uid,t_accountrp.uaccountrpid,t_a
with as 递归id | parentid | Code
1 | null | S1409110001
2 |1 | S1409170004
3 |2 | S1409170006
with accountrp AS( SELECT TOP 1 uid,uaccountrpid,ccode from t_accountrp where ccode='S1409170006' UNION ALL SELECT t_accountrp.uid,t_accountrp.uaccountrpid,t_accountrp.ccode from accountrp inner join t_accountrp on accountrp.uaccountrpid=t_accountrp.uid )select * from accountrp ORDER BY ccode;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The recursion depth of C++ functions is limited, and exceeding this limit will result in a stack overflow error. The limit value varies between systems and compilers, but is usually between 1,000 and 10,000. Solutions include: 1. Tail recursion optimization; 2. Tail call; 3. Iterative implementation.

Yes, C++ Lambda expressions can support recursion by using std::function: Use std::function to capture a reference to a Lambda expression. With a captured reference, a Lambda expression can call itself recursively.

We take the integer array Arr[] as input. The goal is to find the largest and smallest elements in an array using a recursive method. Since we are using recursion, we will iterate through the entire array until we reach length = 1 and then return A[0], which forms the base case. Otherwise, the current element is compared to the current minimum or maximum value and its value is updated recursively for subsequent elements. Let’s look at various input and output scenarios for this −Input −Arr={12,67,99,76,32}; Output −Maximum value in the array: 99 Explanation &mi

Given two strings str_1 and str_2. The goal is to count the number of occurrences of substring str2 in string str1 using a recursive procedure. A recursive function is a function that calls itself within its definition. If str1 is "Iknowthatyouknowthatiknow" and str2 is "know" the number of occurrences is -3. Let us understand through examples. For example, input str1="TPisTPareTPamTP", str2="TP"; output Countofoccurrencesofasubstringrecursi

The recursive algorithm solves structured problems through function self-calling. The advantage is that it is simple and easy to understand, but the disadvantage is that it is less efficient and may cause stack overflow. The non-recursive algorithm avoids recursion by explicitly managing the stack data structure. The advantage is that it is more efficient and avoids the stack. Overflow, the disadvantage is that the code may be more complex. The choice of recursive or non-recursive depends on the problem and the specific constraints of the implementation.

Python is a programming language that is easy to learn and use. However, when using Python to write recursive functions, you may encounter errors in which the recursion depth is too large. This problem needs to be solved. This article will show you how to solve Python's maximum recursion depth error. 1. Understand recursion depth. Recursion depth refers to the number of layers of nested recursive functions. By default in Python, the limit of recursion depth is 1000. If the number of recursion levels exceeds this limit, the system will report an error. This error is often called the "maximum recursion depth error"

A recursive function is a technique that calls itself repeatedly to solve a problem in string processing. It requires a termination condition to prevent infinite recursion. Recursion is widely used in operations such as string reversal and palindrome checking.

Recursion is a powerful technique that allows a function to call itself to solve a problem. In C++, a recursive function consists of two key elements: the base case (which determines when the recursion stops) and the recursive call (which breaks the problem into smaller sub-problems ). By understanding the basics and practicing practical examples such as factorial calculations, Fibonacci sequences, and binary tree traversals, you can build your recursive intuition and use it in your code with confidence.
