postgresql pg_buffercache
postgresql pg_buffercache pg_buffercache模块是用于查看shared buffer cache信息,决定shared buffer cache大还是
postgresql pg_buffercache
pg_buffercache模块是用于查看shared buffer cache信息,决定shared buffer cache大还是小。
Installing pg_buffercache into a database:
$ createdb pgbench
$ psql -d pgbench -f /usr/share/postgresql/contrib/pg_buffercache.sql
两步即可完成
pg_buffercache.sql内容:
/* contrib/pg_buffercache/pg_buffercache--1.0.sql */
-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pg_buffercache" to load this file. \quit
-- Register the function.
CREATE FUNCTION pg_buffercache_pages()
RETURNS SETOF RECORD
AS 'MODULE_PATHNAME', 'pg_buffercache_pages'
LANGUAGE C;
-- Create a view for convenient access.
CREATE VIEW pg_buffercache AS
SELECT P.* FROM pg_buffercache_pages() AS P
(bufferid integer, relfilenode oid, reltablespace oid, reldatabase oid,
relforknumber int2, relblocknumber int8, isdirty bool, usagecount int2);
-- Don't want these to be available to public.
REVOKE ALL ON FUNCTION pg_buffercache_pages() FROM PUBLIC;
REVOKE ALL ON pg_buffercache FROM PUBLIC;
创建函数和视图,回收PUBLIC 权限。
Name Type References Description
bufferid integer ID, in the range 1..shared_buffers
relfilenode oid pg_class.relfilenode Filenode number of the relation
reltablespace oid pg_tablespace.oid Tablespace OID of the relation
reldatabase oid pg_database.oid Database OID of the relation
relblocknumber bigint Page number within the relation
relforknumber smallint Fork number within the relation
isdirty boolean Is the page dirty?
usagecount smallint Page LRU count
pg_buffercache使用:
查看shared buffers大小:
postgres=# SELECT name,setting,unit,current_setting(name) FROM pg_settings WHERE name='shared_buffers';
name | setting | unit | current_setting
----------------+---------+------+-----------------
shared_buffers | 4096 | 8kB | 32MB
(1 row)
postgres=# select count(*) from pg_buffercache;
count
-------
4096
(1 row)
可见block数量一致,大小一致。
查看当前数据库buffer的使用情况排名:
SELECT
c.relname,
count(*) AS buffers
FROM pg_class c
INNER JOIN pg_buffercache b
ON b.relfilenode=c.relfilenode
INNER JOIN pg_database d
ON (b.reldatabase=d.oid AND d.datname=current_database())
GROUP BY c.relname
ORDER BY 2 DESC
LIMIT 10;
relname | buffers
---------------------------+---------
pg_statistic | 15
pg_operator | 13
pg_depend_reference_index | 13
pg_depend | 13
pg_rewrite | 8
pg_depend_depender_index | 6
pg_toast_2619 | 6
pg_index | 6
pg_extension | 5
pg_namespace | 5
(10 rows)
使用pg_buffercache比较灵活,可以通过isdirty字段查询脏块,如果是未使用的buffer,那么除了bufferid,其他字段都为空值。
select count(*) from pg_buffercache where isdirty is true;
select count(*)*8/1024||'MB' from pg_buffercache where relfilenode is null and reltablespace is null and reldatabase is null and relforknumber is null and relblocknumber is null and isdirty is null and usagecount is null;
查看buffercache对象的使用大小以及百分比
SELECT
c.relname,
pg_size_pretty(count(*) * 8192) as buffered,
round(100.0 * count(*) /
(SELECT setting FROM pg_settings
WHERE name='shared_buffers')::integer,1)
AS buffers_percent,
round(100.0 * count(*) * 8192 /
pg_relation_size(c.oid),1)
AS percent_of_relation
FROM pg_class c
INNER JOIN pg_buffercache b
ON b.relfilenode = c.relfilenode
INNER JOIN pg_database d
ON (b.reldatabase = d.oid AND d.datname = current_database())
GROUP BY c.oid,c.relname
ORDER BY 3 DESC
LIMIT 10;
relname | buffered | buffers_percent | percent_of_relation
----------------------------------+----------+-----------------+---------------------
pg_statistic | 120 kB | 0.4 | 100.0
pg_depend | 104 kB | 0.3 | 29.5
pg_operator | 104 kB | 0.3 | 100.0
pg_depend_reference_index | 104 kB | 0.3 | 50.0
pg_rewrite | 64 kB | 0.2 | 66.7
pg_operator_oid_index | 32 kB | 0.1 | 100.0
pg_statistic_relid_att_inh_index | 32 kB | 0.1 | 100.0
pg_operator_oprname_l_r_n_index | 40 kB | 0.1 | 100.0
pg_depend_depender_index | 48 kB | 0.1 | 22.2
pg_amop_fam_strat_index | 32 kB | 0.1 | 100.0
缓冲区使用分布:
SELECT
c.relname, count(*) AS buffers,usagecount
FROM pg_class c
INNER JOIN pg_buffercache b
ON b.relfilenode = c.relfilenode
INNER JOIN pg_database d
ON (b.reldatabase = d.oid AND d.datname = current_database())
GROUP BY c.relname,usagecount
ORDER BY c.relname,usagecount;
relname | buffers | usagecount
-----------------------------------+---------+------------
pg_aggregate | 1 | 5
pg_aggregate_fnoid_index | 1 | 4
pg_aggregate_fnoid_index | 1 | 5
pg_am | 1 | 5
pg_amop | 3 | 5
pg_amop_fam_strat_index | 1 | 1
pg_amop_fam_strat_index | 3 | 5
pg_amop_opr_fam_index | 3 | 5
pg_amproc | 1 | 4
pg_amproc | 1 | 5
pg_amproc_fam_proc_index | 2 | 5
pg_attrdef | 1 | 3
pg_attrdef_adrelid_adnum_index | 2 | 3
pg_attrdef_oid_index | 1 | 1
pg_attrdef_oid_index | 1 | 2
pg_cast | 2 | 5
pg_cast_source_target_index | 2 | 5
pg_collation | 1 | 1
pg_collation_oid_index | 1 | 3
pg_collation_oid_index | 2 | 5
pg_constraint | 1 | 1
pg_default_acl_role_nsp_obj_index | 1 | 5
pg_depend | 3 | 1
pg_depend | 1 | 2
pg_depend | 9 | 5
pg_depend_depender_index | 1 | 4
pg_depend_depender_index | 5 | 5
pg_depend_reference_index | 2 | 1
pg_depend_reference_index | 1 | 2
pg_depend_reference_index | 1 | 4
pg_depend_reference_index | 9 | 5

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL and PostgreSQL: Performance Comparison and Optimization Tips When developing web applications, the database is an indispensable component. When choosing a database management system, MySQL and PostgreSQL are two common choices. They are both open source relational database management systems (RDBMS), but there are some differences in performance and optimization. This article will compare the performance of MySQL and PostgreSQL and provide some optimization tips. Performance comparison comparing two database management

MySQL and PostgreSQL: Best Practices in Web Development Introduction: In the modern world of web development, databases are an essential component. When choosing a database, common choices are MySQL and PostgreSQL. This article will cover best practices for using MySQL and PostgreSQL in web development and provide some code examples. 1. Applicable scenarios MySQL is suitable for most web applications, especially those that require high performance, scalability and ease of use.

Go language is a fast and efficient programming language suitable for building web services and back-end applications. PostgreSQL is an open source relational database management system that promises to provide higher reliability, scalability and data security. In this article, we’ll take a deep dive into using PostgreSQL with Go and provide some practical code examples and tips. Installing and setting up PostgreSQL First, we need to install and set up PostgreSQL. Can be found on the official website

Learn the database functions in the Go language and implement the addition, deletion, modification, and query operations of PostgreSQL data. In modern software development, the database is an indispensable part. As a powerful programming language, Go language provides a wealth of database operation functions and toolkits, which can easily implement addition, deletion, modification and query operations of the database. This article will introduce how to learn database functions in Go language and use PostgreSQL database for actual operations. Step 1: Install the database driver in Go language for each database

MySQL and PostgreSQL: Data Security and Backup Strategies Introduction: In modern society, data has become an indispensable part of business and personal life. For database management systems, data security and backup strategies are crucial, both to protect data from loss or damage and to ensure the reliability and integrity of recovered data. This article will focus on the data security and backup strategies of two mainstream relational database systems, MySQL and PostgreSQL. 1. Data security: (1) User rights

With the development of database technology, database management systems also present a variety of choices. Developers can choose the most suitable database according to their needs and preferences. As an advanced open source relational database system, PostgreSQL is attracting more and more attention and use by developers. So, how to use PostgreSQL database in PHP programming? 1. Install and configure the PostgreSQL database. Before using PostgreSQL, you need to install and configure it. first

MySQL and PostgreSQL: How to optimize database query performance? Overview: Database query performance is an important consideration when developing applications. Good query performance improves application responsiveness and user experience. This article will introduce some methods to optimize database query performance, focusing on two commonly used databases, MySQL and PostgreSQL. Optimization of database indexes: Database indexes are an important factor in improving query performance. Indexes can speed up data search and reduce query scanning time.

Database capacity planning and expansion: MySQL vs. PostgreSQL Introduction: With the rapid development of the Internet and the advent of the big data era, database capacity planning and expansion has become increasingly important. MySQL and PostgreSQL are two popular relational database management systems (RDBMS). They have different characteristics and applicable scenarios in database capacity planning and expansion. This article will compare the two databases and give some code examples to demonstrate their differences. 1. MySQ
