mongodb入门-6查询1
mongodb入门-6查询1 我感觉在使用库的时候使用的最多的是查询,所以学好了查询,我们将来做开发的时候会很顺手,很容易。同样mongodb提供了强大的查询功能,我在这里尽量的详细的讲明白这些查血,如果哪里错误还请大虾指出。 查找某集合所有文档 在mongodb中
mongodb入门-6查询1
我感觉在使用库的时候使用的最多的是查询,所以学好了查询,我们将来做开发的时候会很顺手,很容易。同样mongodb提供了强大的查询功能,我在这里尽量的详细的讲明白这些查血,如果哪里错误还请大虾指出。
查找某集合所有文档
在mongodb中查询使用find方法,使用方法是db.集合名.find({}),find方法的参数是一个json对象,更确切说是bson对象,但是如果有人说json对象的话你理解了就可以了。我们使用find方法的时候,如果没有传递参数那就是传递的一个空json,也就是查询集合中的所有文档。如下:
[html]
> db.user.find()
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b3"), "name" : "user1", "age" : 1 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b4"), "name" : "user2", "age" : 2 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b5"), "name" : "user3", "age" : 3 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b6"), "name" : "user4", "age" : 4 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
条件查询
既然find有参数那我们就可以给其传递参数,如下我们查询name为user0的文档:
[html]
> db.user.find({name:"user0"})
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0", "age" : 0 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
返回文档的某些值
这里我们找到了name为user0的文档,但是有时候我们只想获得这个文档的某几个值,这时候我们就可以给find传第二个参数,这里的参数同第一个一样都是json。我们只想获得age的值,可以如下编写:
[html]
> db.user.find({name:"user0"},{age:1})
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "age" : 0 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "age" : 20 }
不让文档显示某些值
看上面的代码我们给age设置为1,表示我们需要得到age的值,如果我们不想要age的值,我们可以将其设置为0。同样true、false和1、0在这里作用一样,还有一点在mongodb这个地方使用的数字非0就代表真,但是不建议使用其他的数字,我们可以使用如下的方式去掉age的值:
[html]
> db.user.find({name:"user0"},{age:0})
{ "_id" : ObjectId("5198c286c686eb50e2c843b2"), "name" : "user0" }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0" }
条件表达式
在mongodb中可以使用条件表达式, =,这里没有=,因为向上面那样的查询就是=的效果,前面的字符对应mongodb中的方法为$.lt,$.gt,$lte,$gte。
我们查询年龄大于5的用户,如下:
[html]
> db.user.find({age:{$gt:5}})
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
查找年龄大于等于5的用户,如下:
[html]
> db.user.find({age:{$gte:5}})
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
{ "_id" : ObjectId("5198c286c686eb50e2c843ba"), "name" : "user8", "age" : 8 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bb"), "name" : "user9", "age" : 9 }
{ "_id" : ObjectId("5198c286c686eb50e2c843bc"), "name" : "user10", "age" : 10 }
{ "_id" : ObjectId("5198c3cac686eb50e2c843bd"), "name" : "user0", "age" : 20 }
同样$gt/$.gte跟上面的使用方法相同。
limit限制返回的文档的数量
在这里介绍一下limit方法,这个方法是限制返回的文档的数量。使用如下:
[html]
> db.user.find({age:{$gte:5}}).limit(3)
{ "_id" : ObjectId("5198c286c686eb50e2c843b7"), "name" : "user5", "age" : 5 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b8"), "name" : "user6", "age" : 6 }
{ "_id" : ObjectId("5198c286c686eb50e2c843b9"), "name" : "user7", "age" : 7 }
与上面的比较只显示了三条数据。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Kimi: In just one sentence, in just ten seconds, a PPT will be ready. PPT is so annoying! To hold a meeting, you need to have a PPT; to write a weekly report, you need to have a PPT; to make an investment, you need to show a PPT; even when you accuse someone of cheating, you have to send a PPT. College is more like studying a PPT major. You watch PPT in class and do PPT after class. Perhaps, when Dennis Austin invented PPT 37 years ago, he did not expect that one day PPT would become so widespread. Talking about our hard experience of making PPT brings tears to our eyes. "It took three months to make a PPT of more than 20 pages, and I revised it dozens of times. I felt like vomiting when I saw the PPT." "At my peak, I did five PPTs a day, and even my breathing was PPT." If you have an impromptu meeting, you should do it

It is recommended to use the latest version of MongoDB (currently 5.0) as it provides the latest features and improvements. When selecting a version, you need to consider functional requirements, compatibility, stability, and community support. For example, the latest version has features such as transactions and aggregation pipeline optimization. Make sure the version is compatible with the application. For production environments, choose the long-term support version. The latest version has more active community support.

Node.js is a server-side JavaScript runtime, while Vue.js is a client-side JavaScript framework for creating interactive user interfaces. Node.js is used for server-side development, such as back-end service API development and data processing, while Vue.js is used for client-side development, such as single-page applications and responsive user interfaces.

In the early morning of June 20th, Beijing time, CVPR2024, the top international computer vision conference held in Seattle, officially announced the best paper and other awards. This year, a total of 10 papers won awards, including 2 best papers and 2 best student papers. In addition, there were 2 best paper nominations and 4 best student paper nominations. The top conference in the field of computer vision (CV) is CVPR, which attracts a large number of research institutions and universities every year. According to statistics, a total of 11,532 papers were submitted this year, and 2,719 were accepted, with an acceptance rate of 23.6%. According to Georgia Institute of Technology’s statistical analysis of CVPR2024 data, from the perspective of research topics, the largest number of papers is image and video synthesis and generation (Imageandvideosyn

We know that LLM is trained on large-scale computer clusters using massive data. This site has introduced many methods and technologies used to assist and improve the LLM training process. Today, what we want to share is an article that goes deep into the underlying technology and introduces how to turn a bunch of "bare metals" without even an operating system into a computer cluster for training LLM. This article comes from Imbue, an AI startup that strives to achieve general intelligence by understanding how machines think. Of course, turning a bunch of "bare metal" without an operating system into a computer cluster for training LLM is not an easy process, full of exploration and trial and error, but Imbue finally successfully trained an LLM with 70 billion parameters. and in the process accumulate

The data of the MongoDB database is stored in the specified data directory, which can be located in the local file system, network file system or cloud storage. The specific location is as follows: Local file system: The default path is Linux/macOS:/data/db, Windows: C:\data\db. Network file system: The path depends on the file system. Cloud Storage: The path is determined by the cloud storage provider.

Retrieval-augmented generation (RAG) is a technique that uses retrieval to boost language models. Specifically, before a language model generates an answer, it retrieves relevant information from an extensive document database and then uses this information to guide the generation process. This technology can greatly improve the accuracy and relevance of content, effectively alleviate the problem of hallucinations, increase the speed of knowledge update, and enhance the traceability of content generation. RAG is undoubtedly one of the most exciting areas of artificial intelligence research. For more details about RAG, please refer to the column article on this site "What are the new developments in RAG, which specializes in making up for the shortcomings of large models?" This review explains it clearly." But RAG is not perfect, and users often encounter some "pain points" when using it. Recently, NVIDIA’s advanced generative AI solution

Editor of the Machine Power Report: Yang Wen The wave of artificial intelligence represented by large models and AIGC has been quietly changing the way we live and work, but most people still don’t know how to use it. Therefore, we have launched the "AI in Use" column to introduce in detail how to use AI through intuitive, interesting and concise artificial intelligence use cases and stimulate everyone's thinking. We also welcome readers to submit innovative, hands-on use cases. Video link: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Recently, the life vlog of a girl living alone became popular on Xiaohongshu. An illustration-style animation, coupled with a few healing words, can be easily picked up in just a few days.
