Home Database Mysql Tutorial Oracle 11g Data Guard Role Transitions: Failover

Oracle 11g Data Guard Role Transitions: Failover

Jun 07, 2016 pm 03:02 PM
data guard oracle role

Role TransitionsInvolving Physical Standby Databases A database operates in one of the following mutuallyexclusive roles: primary or standby . Data Guard enables you to change theseroles dynamically by issuing the SQL statements described

Role TransitionsInvolving Physical Standby Databases

 

A database operates in one of the following mutuallyexclusive roles:primary or standby. Data Guard enables you to change theseroles dynamically by issuing the SQL statements described in this chapter, orby using either of the Data Guard broker's interfaces. Oracle Data Guardsupports the following role transitions:

 

  • Switchover
    Allows the primary database to switch roles with one of its standby databases. There is no data loss during a switchover. After a switchover, each database continues to participate in the Data Guard configuration with its new role.

 

  • Failover
    Changes a standby database to the primary role in response to a primary database failure. If the primary database was not operating in either maximum protection mode or maximum availability mode before the failure, some data loss may occur. If Flashback Database is enabled on the primary database, it can be reinstated as a standby for the new primary database once the reason for the failure is corrected.

 

Performing a Failoverto a Physical Standby Database

 

Fault Simulation

 

Original Primary:

SQL>set linesize 200

SQL>  selectOPEN_MODE,PROTECTION_MODE,DATABASE_ROLE,DB_UNIQUE_NAME,SWITCHOVER_STATUS fromv$database;

 

OPEN_MODE            PROTECTION_MODE      DATABASE_ROLE    DB_UNIQUE_NAME                 SWITCHOVER_STATUS

---------------------------------------- ---------------- --------------------------------------------------

READWRITE           MAXIMUM AVAILABILITYPRIMARY          prod                           TO STANDBY

 

SQL>exit

Disconnectedfrom Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production

Withthe Partitioning, OLAP, Data Mining and Real Application Testing options

[oracle@prod~]$ ps -ef | grep smon

oracle    3915    1  0 16:20 ?        00:00:01 ora_smon_prod

oracle    4584 3323  0 16:57 pts/1    00:00:00 grep --color=auto smon

[oracle@prod~]$ kill -9 3915

 

Step1   Flush any unsent redo from the primary database to thetarget standby database.

 

If the primary database can be mounted, it may be possible to flush any unsent archived andcurrent redo from the primary database to the standby database. If thisoperation is successful, a zero data loss failover is possible even if theprimary database is not in a zero data loss data protection mode.

 

Ensure that Redo Apply is active at the targetstandby database.

Standby:

SQL>select OPEN_MODE,PROTECTION_MODE,DATABASE_ROLE,DB_UNIQUE_NAME,SWITCHOVER_STATUSfrom v$database;

 

OPEN_MODE            PROTECTION_MODE      DATABASE_ROLE    DB_UNIQUE_NAME                 SWITCHOVER_STATUS

---------------------------------------- ---------------- --------------------------------------------------

READ ONLY WITH APPLY MAXIMUM AVAILABILITY PHYSICALSTANDBY standby                        TOPRIMARY

 

Primary:

Mount, but do not open the primarydatabase. If the primary database cannot be mounted, go toStep2.

Issue the following SQL statement at the primarydatabase:

SQL>startup mount;

ORACLEinstance started.

TotalSystem Global Area  263639040 bytes

FixedSize                  1344312 bytes

VariableSize             230689992 bytes

DatabaseBuffers           25165824 bytes

RedoBuffers                6438912 bytes

Databasemounted.

SQL>alter system flush redo to 'standby';

Systemaltered.

 

 ALTER SYSTEMFLUSH REDO TO target_db_name .

For target_db_name, specify the DB_UNIQUE_NAME of thestandby database that is to receive the redo flushed from the primary database.

This statement flushes any unsent redo from theprimary database to the standby database, and waits for that redo to be appliedto the standby database.

If this statement completes without anyerrors, go toStep5. If the statement completes with any error,or if it must be stopped because you cannot wait any longer for the statementto complete, continue with Step2.

 

Step2   Verify that the standby database has the most recentlyarchived redo log file for each primary database redo thread.

Query the V$ARCHIVED_LOG view on the target standbydatabase to obtain the highest log sequence number for each redo thread.

 

Primary and Standby

SQL>SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#) OVER (PARTITION BY thread#) ASLAST from V$ARCHIVED_LOG;

 

    THREAD      LAST

--------------------

         1         98

standby

If possible, copy the most recently archived redo logfile for each primary database redo thread to the standby database if it doesnot exist there, and register it. This must be done for each redo thread.

 

ALTERDATABASE REGISTER PHYSICAL LOGFILE 'redo_logfile';

 

Step3   Identify and resolve any archived redo log gaps.

 

Query the V$ARCHIVE_GAP view on the target standbydatabase to determine if there are any redo gaps on the target standbydatabase.

SQL>SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;

norows selected

 

THREAD#   LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
         1            90             92

In this example the gap comprises archived redo logfiles with sequence numbers 90, 91, and 92 for thread 1.

If possible, copy any missing archived redo log filesto the target standby database from the primary database and register them atthe target standby database. This must be done for each redo thread.

 

SQL>ALTER DATABASE REGISTER PHYSICAL LOGFILE 'redo_logfile';

 

 

Step4   Repeat Step 3 until all gaps are resolved.

The query executed inStep3 displays information for the highest gaponly. After resolving a gap, you must repeat the query until no more rows arereturned.

If, after performingStep2 throughStep4, you are not able to resolve all gaps in thearchived redo log files (for example, because you do not have access to thesystem that hosted the failed primary database), some data loss will occurduring the failover.

 

Step5   Stop Redo Apply.

Issue the following SQL statement on the targetstandby database:

 

SQL>alter database recover managed standby database cancel;

Databasealtered.

 

Step6   Finish applying all received redo data.

Issue the following SQL statement on the targetstandby database:

 

SQL>alter database recover managed standby database finish;

Databasealtered.

 

If this statement completes without anyerrors, proceed toStep7.

If an error occurs, some received redo data was notapplied. Try to resolve the cause of the error and re-issue the statementbefore proceeding to the next step.

Note that if there is a redo gap thatwas not resolved inStep3 andStep4, you will receive an error stating that thereis a redo gap.

If the error condition cannot be resolved, a failovercan still be performed (with some data loss) by issuing the following SQLstatement on the target standby database:

 

SQL>alter database activate physical standby database;

Databasealtered.

SQL>select OPEN_MODE,PROTECTION_MODE,DATABASE_ROLE,DB_UNIQUE_NAME,SWITCHOVER_STATUSfrom v$database;

 

OPEN_MODE            PROTECTION_MODE      DATABASE_ROLE    DB_UNIQUE_NAME                 SWITCHOVER_STATUS

---------------------------------------- ---------------- --------------------------------------------------

MOUNTED              MAXIMUM AVAILABILITY PRIMARY          standby                        NOT ALLOWED

 

Proceed toStep9 when the ACTIVATE statement completes.

 

Step7   Verify that the target standby database is ready to become aprimary database.

Query the SWITCHOVER_STATUS column of the V$DATABASEview on the target standby database.

SQL>SELECT SWITCHOVER_STATUS FROM V$DATABASE;

 

SWITCHOVER_STATUS

--------------------

NOTALLOWED

 

A value of either TO PRIMARY or SESSIONS ACTIVEindicates that the standby database is ready to be switched to the primaryrole. If neither of these values is returned, verify that Redo Apply is activeand continue to query this view until either TO PRIMARY or SESSIONS ACTIVE isreturned.

 

Step8   Switch the physical standby database to the primary role.

Issue the following SQL statement on the targetstandby database:

SQL>alter database commit to switchover to primary with session shutdown;

 

Note:

The WITH SESSION SHUTDOWN clause can be omitted fromthe switchover statement if the query of the SWITCHOVER_STATUS column performedin the previous step returned a value of TO PRIMARY.

 

Step9   Open the new primary database.

SQL>alter database open;

Databasealtered.

SQL>select OPEN_MODE,PROTECTION_MODE,DATABASE_ROLE,DB_UNIQUE_NAME,SWITCHOVER_STATUSfrom v$database;

 

OPEN_MODE            PROTECTION_MODE      DATABASE_ROLE    DB_UNIQUE_NAME                 SWITCHOVER_STATUS

---------------------------------------- ---------------- --------------------------------------------------

READWRITE           MAXIMUM AVAILABILITYPRIMARY          standby                        FAILED DESTINATION

 

Step10   Back up the new primary database.

Oracle recommends that a full backup be taken of thenew primary database.

 

Step11   Restart Redo Apply if it has stopped at any of the otherphysical standby databases in your Data Guard configuration.

SQL>alter database recover managed standby database using current logfiledisconnect from session;

 

Step12   Optionally, restore the failed primary database.

After a failover, the original primary database canbe converted into a physical standby database of the new primary database usingthe method

As following:


Flashing Back a FailedPrimary Database into a Physical Standby Database



作者:xiangsir

QQ:444367417

MSN:xiangsir@hotmail.com


 

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How long will Oracle database logs be kept? How long will Oracle database logs be kept? May 10, 2024 am 03:27 AM

The retention period of Oracle database logs depends on the log type and configuration, including: Redo logs: determined by the maximum size configured with the "LOG_ARCHIVE_DEST" parameter. Archived redo logs: Determined by the maximum size configured by the "DB_RECOVERY_FILE_DEST_SIZE" parameter. Online redo logs: not archived, lost when the database is restarted, and the retention period is consistent with the instance running time. Audit log: Configured by the "AUDIT_TRAIL" parameter, retained for 30 days by default.

Function to calculate the number of days between two dates in oracle Function to calculate the number of days between two dates in oracle May 08, 2024 pm 07:45 PM

The function in Oracle to calculate the number of days between two dates is DATEDIFF(). The specific usage is as follows: Specify the time interval unit: interval (such as day, month, year) Specify two date values: date1 and date2DATEDIFF(interval, date1, date2) Return the difference in days

The order of the oracle database startup steps is The order of the oracle database startup steps is May 10, 2024 am 01:48 AM

The Oracle database startup sequence is: 1. Check the preconditions; 2. Start the listener; 3. Start the database instance; 4. Wait for the database to open; 5. Connect to the database; 6. Verify the database status; 7. Enable the service (if necessary ); 8. Test the connection.

How much memory does oracle require? How much memory does oracle require? May 10, 2024 am 04:12 AM

The amount of memory required by Oracle depends on database size, activity level, and required performance level: for storing data buffers, index buffers, executing SQL statements, and managing the data dictionary cache. The exact amount is affected by database size, activity level, and required performance level. Best practices include setting the appropriate SGA size, sizing SGA components, using AMM, and monitoring memory usage.

How to use interval in oracle How to use interval in oracle May 08, 2024 pm 07:54 PM

The INTERVAL data type in Oracle is used to represent time intervals. The syntax is INTERVAL <precision> <unit>. You can use addition, subtraction, multiplication and division operations to operate INTERVAL, which is suitable for scenarios such as storing time data and calculating date differences.

How to see the number of occurrences of a certain character in Oracle How to see the number of occurrences of a certain character in Oracle May 09, 2024 pm 09:33 PM

To find the number of occurrences of a character in Oracle, perform the following steps: Get the total length of a string; Get the length of the substring in which a character occurs; Count the number of occurrences of a character by subtracting the substring length from the total length.

How to replace string in oracle How to replace string in oracle May 08, 2024 pm 07:24 PM

The method of replacing strings in Oracle is to use the REPLACE function. The syntax of this function is: REPLACE(string, search_string, replace_string). Usage steps: 1. Identify the substring to be replaced; 2. Determine the new string to replace the substring; 3. Use the REPLACE function to replace. Advanced usage includes: multiple replacements, case sensitivity, special character replacement, etc.

Oracle database server hardware configuration requirements Oracle database server hardware configuration requirements May 10, 2024 am 04:00 AM

Oracle database server hardware configuration requirements: Processor: multi-core, with a main frequency of at least 2.5 GHz. For large databases, 32 cores or more are recommended. Memory: At least 8GB for small databases, 16-64GB for medium sizes, up to 512GB or more for large databases or heavy workloads. Storage: SSD or NVMe disks, RAID arrays for redundancy and performance. Network: High-speed network (10GbE or higher), dedicated network card, low-latency network. Others: Stable power supply, redundant components, compatible operating system and software, heat dissipation and cooling system.

See all articles