Home > Database > Mysql Tutorial > mysql 慢日志查询模块的测试[python]

mysql 慢日志查询模块的测试[python]

WBOY
Release: 2016-06-07 15:13:22
Original
1063 people have browsed it

rds 提供给用户可以查询到慢查询语句的日志的功能,为此我要开展相应的测试,以下是测试的一些记录 前置条件,需要构造一些可以进行慢日志查询的元数据 *************************** 1. row *************************** id: 1 age: 120 name: uCTOGsiaYDVeH


rds 提供给用户可以查询到慢查询语句的日志的功能,为此我要开展相应的测试,以下是测试的一些记录

前置条件,需要构造一些可以进行慢日志查询的元数据

*************************** 1. row ***************************         id: 1        age: 120       name: uCTOGsiaYDVeHZCkamzqWFoSVxuPNCWZFXNRrrytcDVVnLKEfjtFeaTwwxcAyVBvDNIMYDCxAkizAYQFETEulJmZoPeTJsABKnJLspDvYNbLxsiBYiYYzjzcgmt_created: 2012-09-11 14:23:21        msg: uCTOGsiaYDVeHZCkamzqWFoSVxuPNCWZFXNRrrytcDVVnLKEfjtFeaTwwxcAyVBvDNIMYDCxAkizAYQFETEulJmZoPeTJsABKnJLspDvYNbLxsiBYiYYzjzcuCTOGsiaYDVeHZCkamzqWFoSVxuPNCWZFXNRrrytcDVVnLKEfjtFeaTwwxcAyVBvDNIMYDCxAkizAYQFETEulJmZoPeTJsABKnJLspDvYNbLxsiBYiYYzjzcuCTOGsiaYDVeHZCkamzqWFoSVxuPNCWZFXNRrrytcDVVnLKEfjtFeaTwwxcAyVBvDNIMYDCxAkizAYQFETEulJmZoPeTJsABKnJLspDvYNbLxsiBYiYYzjzc

类似如上数据20万条。

构造代码片段如下:

1.首先要创建一张表

122 
123     sql = 'CREATE TABLE if not exists t1(id int unsigned primary key auto_increment not null , age tinyint unsigned , name VARCHAR(128) , gmt_created dat    etime NOT NULL , msg text)'
try:
125         cursor.execute(sql)
126     except Exception, e:
127         print ("excute %s error,"%sql, e)
Copy after login


2.通过多线程插入数据,插入数据的时候age是一定范围内的随机数,msg,name为一定规则的随机字符串

67 def insert( cursor , svr , ibcx ) :
 68     commit_num = 500
 69     print bcolors.OKGREEN + time.strftime( '%Y-%m-%d %H:%M:%S' , time.localtime() ) + ' ' + svr + ' sarting insert into for 50000 --> %d --> 500' % ( ibc    x ) + bcolors.ENDC
 70     isql = "INSERT INTO t1( age , name , gmt_created , msg ) VALUES"
 71     cursor.execute('BEGIN')
 72     for v in xrange( commit_num ) :
 73         age = random.randint( 1 , 128 )
 74         #import pdb
 75         #pdb.set_trace()
 76         rndstr = randstr( age )
 77         #print '*************',rndstr
 78         sql = '( ' + str( age ) + ' , \'' + rndstr + '\''+ ',\''+time.strftime( '%Y-%m-%d %H:%M:%S' , time.localtime() ) + '\' , \'' + rndstr*3 +'\')'
 79         if v == 0 :
 80             isql = isql + sql
 81         else :
 82             isql = isql + ' , ' + sql
 83     cursor.execute( isql )
 84     cursor.execute( 'COMMIT' )

 85 
 86 def init( cursor , svr ) :
 87     timestamp = time.time()
 88     pool_num = 50000
 89     ibcx = 0
 90     for x in xrange( 100 ) :
 91         ibcx += 500
 92         insert(  cursor , svr , ibcx )
 93         print bcolors.WARNING + time.strftime( '%Y-%m-%d %H:%M:%S' , time.localtime() ) + ' ' + svr + ' Init_data successful using time %d seconds' % ( i    nt( time.time() ) - int( timestamp ) ) + bcolors.ENDC
Copy after login


调用插入数据的多线程

if sys.argv[1] in ( 'init' , 'o' ) :
131         print bcolors.OKBLUE + time.strftime( '%Y-%m-%d %H:%M:%S' , time.localtime() ) + ' Start initization table Data' + bcolors.ENDC
132         threading.Thread( target = init , args = ( cursor , conn_addr ) ).start()
Copy after login

3. 亮点:进行复杂 的可以产生慢日志的查询,主要sql如下


2012-09-11 16:04:53All Threding exit
2012-09-11 16:04:53 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:04:57 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:04:58 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:00 SELECT count(*) from t1
2012-09-11 16:05:00 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:00 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:02 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:02 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:05 SELECT count(*) from t1
2012-09-11 16:05:05 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:05 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:10 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:10 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:12 SELECT count(*) from t1
2012-09-11 16:05:12 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:12 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:18 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:19 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:21 SELECT count(*) from t1
2012-09-11 16:05:21 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:21 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:25 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:25 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:27 SELECT count(*) from t1
2012-09-11 16:05:27 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:27 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:31 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:31 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:34 SELECT count(*) from t1
2012-09-11 16:05:34 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:34 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:35 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:35 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:37 SELECT count(*) from t1
2012-09-11 16:05:37 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:38 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:43 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:43 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:45 SELECT count(*) from t1
2012-09-11 16:05:45 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:45 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:49 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:50 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:52 SELECT count(*) from t1
2012-09-11 16:05:52 SELECT DISTINCT substring(10,50) FROM t1
2012-09-11 16:05:52 SELECT count(distinct name) msg from t1 where age between 1 and 20000 union all SELECT count(distinct name) msg from t1 where age between 5 and 20000
2012-09-11 16:05:56 SELECT name,msg,age from t1 where substring(msg,30,50) = substring(name,2,22) order by gmt_created desc
2012-09-11 16:05:56 SELECT age from t1 group by right(name,50)
2012-09-11 16:05:58 SELECT count(*) from t1
Copy after login

4.进行实际慢日志查询和采集给用户的慢日志进行对比判断是否正确

use mysql

select * from slow_log;

实际结果从rds元数据查找两者进行对比测试


Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template