clob加||隐式转换造成的性能问题
CLOB在隐式类型转换的时候,会消耗这么多的current mode read和 consistent read(同时也会引起db block change,db block gets 的飙升),也就是CPU飙升。 SQL drop table t_clob; SQL create table t_clob(id number,cb clob); SQL insert into t_clob values
CLOB在隐式类型转换的时候,会消耗这么多的current mode read和 consistent read(同时也会引起db block change,db block gets 的飙升),也就是CPU飙升。
SQL> drop table t_clob;
SQL> create table t_clob(id number,cb clob);SQL> insert into t_clob values(1,'3,4,5,6,77,88,99,10,222');
SQL> begin
for i in 1 .. 1000 loop
insert into t_clob values(i,'3,4,99,71,18,91,89,'||i);
end loop;
commit;
end;
/
SQL> set autotrace traceonly
SQL> alter session set events '10046 trace name context forever ,level 12';
SQL> select *
from t_clob
where cb like ',4,'
or cb like ',16'
or cb like ',91';
已用时间: 00: 00: 00.23
执行计划
----------------------------------------------------------
Plan hash value: 3459655851
----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 2015 | 39 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T_CLOB | 1 | 2015 | 39 (0)| 00:00:01 |
----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("CB" LIKE ',4,' OR "CB" LIKE ',16' OR "CB" LIKE ',91')
Note
-----
- dynamic sampling used for this statement
统计信息
----------------------------------------------------------
820 recursive calls
0 db block gets
175 consistent gets
7 physical reads
0 redo size
416 bytes sent via SQL*Net to client
385 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
13 sorts (memory)
0 sorts (disk)
0 rows processed
SQL> select *
from t_clob
where ',' || cb like ',4'
or ',' || cb like ',16'
or ',' || cb like ',91';
未选定行
已用时间: 00: 00: 00.50
执行计划
----------------------------------------------------------
Plan hash value: 3459655851
----------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 2015 | 39 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T_CLOB | 1 | 2015 | 39 (0)| 00:00:01 |
----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(','||"CB" LIKE ',4' OR ','||"CB" LIKE ',16' OR ','||"CB"
LIKE ',91')
Note
-----
- dynamic sampling used for this statement
统计信息
----------------------------------------------------------
5 recursive calls
84084 db block gets
18057 consistent gets
0 physical reads
0 redo size
416 bytes sent via SQL*Net to client
385 bytes received via SQL*Net from client
2 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
0 rows processed
SQL> alter session set events '10046 trace name context off';
会话已更改。
已用时间: 00: 00: 00.00
SQL> set autotrace off
10046 trace的结果:
select *
from t_clob
where cb like ',4,'
or cb like ',16'
or cb like ',91'
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.00 0 7 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 0 16 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.03 0.01 0 23 0 0
Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 61
Rows Row Source Operation
------- ---------------------------------------------------
0 TABLE ACCESS FULL T_CLOB (cr=16 pr=0 pw=0 time=12823 us)
select *
from t_clob
where ',' || cb like ',4'
or ',' || cb like ',16'
or ',' || cb like ',91'
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.03 0 7 15 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.21 0.20 0 9025 42027 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.21 0.24 0 9032 42042 0
Misses in library cache during parse: 1
Optimizer mode: ALL_ROWS
Parsing user id: 61
Rows Row Source Operation
------- ---------------------------------------------------
0 TABLE ACCESS FULL T_CLOB (cr=9025 pr=0 pw=0 time=207946 us)

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Ollama is a super practical tool that allows you to easily run open source models such as Llama2, Mistral, and Gemma locally. In this article, I will introduce how to use Ollama to vectorize text. If you have not installed Ollama locally, you can read this article. In this article we will use the nomic-embed-text[2] model. It is a text encoder that outperforms OpenAI text-embedding-ada-002 and text-embedding-3-small on short context and long context tasks. Start the nomic-embed-text service when you have successfully installed o

The performance comparison of PHP array key value flipping methods shows that the array_flip() function performs better than the for loop in large arrays (more than 1 million elements) and takes less time. The for loop method of manually flipping key values takes a relatively long time.

Performance comparison of different Java frameworks: REST API request processing: Vert.x is the best, with a request rate of 2 times SpringBoot and 3 times Dropwizard. Database query: SpringBoot's HibernateORM is better than Vert.x and Dropwizard's ORM. Caching operations: Vert.x's Hazelcast client is superior to SpringBoot and Dropwizard's caching mechanisms. Suitable framework: Choose according to application requirements. Vert.x is suitable for high-performance web services, SpringBoot is suitable for data-intensive applications, and Dropwizard is suitable for microservice architecture.

The impact of functions on C++ program performance includes function call overhead, local variable and object allocation overhead: Function call overhead: including stack frame allocation, parameter transfer and control transfer, which has a significant impact on small functions. Local variable and object allocation overhead: A large number of local variable or object creation and destruction can cause stack overflow and performance degradation.

Effective techniques for optimizing C++ multi-threaded performance include limiting the number of threads to avoid resource contention. Use lightweight mutex locks to reduce contention. Optimize the scope of the lock and minimize the waiting time. Use lock-free data structures to improve concurrency. Avoid busy waiting and notify threads of resource availability through events.

Go functions can return multiple values of different types. The return value type is specified in the function signature and returned through the return statement. For example, a function can return an integer and a string: funcgetDetails()(int,string). In practice, a function that calculates the area of a circle can return the area and an optional error: funccircleArea(radiusfloat64)(float64,error). Note: If the function signature does not specify a type, a null value is returned; it is recommended to use a return statement with an explicit type declaration to improve readability.

The performance of different PHP functions is crucial to application efficiency. Functions with better performance include echo and print, while functions such as str_replace, array_merge, and file_get_contents have slower performance. For example, the str_replace function is used to replace strings and has moderate performance, while the sprintf function is used to format strings. Performance analysis shows that it only takes 0.05 milliseconds to execute one example, proving that the function performs well. Therefore, using functions wisely can lead to faster and more efficient applications.

In PHP, the conversion of arrays to objects will have an impact on performance, mainly affected by factors such as array size, complexity, object class, etc. To optimize performance, consider using custom iterators, avoiding unnecessary conversions, batch converting arrays, and other techniques.
