Oracle X$ tables – Part 1 – Where do they get their data f
Oracle X$ tables – Part 1 – Where do they get their data from? by Tanel Poder Posted on January 10, 2014 It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an
Oracle X$ tables – Part 1 – Where do they get their data from?
by
Tanel Poder
Posted on
January 10, 2014
It’s long-time public knowledge that X$ fixed tables in Oracle are just “windows” into Oracle’s memory. So whenever you query an X$ table, the FIXED TABLE rowsource function in your SQL execution plan will just read some memory structure, parse its output and show you the results in tabular form. This is correct, but not the whole truth.
Check this example. Let’s query the X$KSUSE table, which is used by V$SESSION:
SQL> SELECT addr, indx, ksuudnam FROM x$ksuse WHERE rownum <strong>391513C4</strong> 1 SYS 3914E710 2 SYS 3914BA5C 3 SYS 39148DA8 4 SYS 391460F4 5 SYS
Now let’s check in which Oracle memory region this memory address resides (SGA, PGA, UGA etc). I’m using my script fcha for this (Find CHunk Address). You should probably not run this script in busy production systems as it uses the potentially dangerous X$KSMSP fixed table:
SQL> @fcha <strong>391513C4</strong> Find in which heap (UGA, PGA or Shared Pool) the memory address 391513C4 resides... WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention in systems under load and with large shared pool. This may even completely hang your instance until the query has finished! You probably do not want to run this in production! Press ENTER to continue, CTRL+C to cancel... LOC KSMCHPTR KSMCHIDX KSMCHDUR KSMCHCOM KSMCHSIZ KSMCHCLS KSMCHTYP KSMCHPAR --- -------- ---------- ---------- ---------------- ---------- -------- ---------- -------- <span><strong>SGA</strong></span> 39034000 1 1 permanent memor 3977316 perm 0 00 SQL>
Ok, these X$KSUSE (V$SESSION) records reside in a permanent allocation in SGA and my X$ query apparently just parsed & presented the information from there.
Now, let’s query something else, for example the “Soviet Union” view X$KCCCP:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692347C</strong> 0 1 1 F692347C 1 1 2 F692347C 2 1 3 F692347C 3 1 4 F692347C 4 1 5
Ok, let’s see where do these records reside:
SQL> @fcha <strong>F692347C</strong> Find in which heap (UGA, PGA or Shared Pool) the memory address F692347C resides... WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention in systems under load and with large shared pool. This may even completely hang your instance until the query has finished! You probably do not want to run this in production! Press ENTER to continue, CTRL+C to cancel... LOC KSMCHPTR KSMCHIDX KSMCHDUR KSMCHCOM KSMCHSIZ KSMCHCLS KSMCHTYP KSMCHPAR --- -------- ---------- ---------- ---------------- ---------- -------- ---------- -------- <span><strong>UGA</strong></span> F6922EE8 <strong>kxsFrame4kPage</strong> 4124 freeabl 0 00 SQL>
Wow, why does the X$KCCCP data reside in my session’s UGA? This is where the extra complication (and sophistication) of X$ fixed tables comes into play!
Some X$ tables do not simply read whatever is in some memory location, but they have helper functions associated with them (something like fixed packages that the ASM instance uses internally). So, whenever you query this X$, then first a helper function is called, which will retrieve the source data from whereever it needs to, then copies it to your UGA in the format corresponding to this X$ and then the normal X$ memory location parsing & presentation code kicks in.
If you trace what the X$KCCCP access does – you’d see a bunch of control file parallel read wait events every time you query the X$ table (to retrieve the checkpoint progress records). So this X$ is not doing just a passive read only presentation of some memory structure (array). The helper function will first do some real work, allocates some runtime memory for the session (the kxsFrame4kPage chunk in UGA) and copies the results of its work to this UGA area – so that the X$ array & offset parsing code can read and present it back to the query engine.
In other words, the ADDR column in X$ tables does not necessarily show where the source data it shows ultimately lives, but just where the final array that got parsed for presentation happened to be. Sometimes the parsed data structure is the ultimate source where it comes from, sometimes a helper function needs to do a bunch of work (like taking latches and walking linked lists for X$KSMSP or even doing physical disk reads from controlfiles for X$KCCCP access).
And more, let’s run the same query against X$KCCCP twice:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F69254B4</strong> 0 1 1 F69254B4 1 1 2 F69254B4 2 1 3 F69254B4 3 1 4 F69254B4 4 1 5
And once more:
SQL> SELECT addr, indx, inst_id, cptno FROM x$kcccp WHERE rownum <strong>F692B508</strong> 0 1 1 F692B508 1 1 2 F692B508 2 1 3 F692B508 3 1 4 F692B508 4 1 5
See how the ADDR column has changed between executions even though we are querying the same data! This is not because the controlfiles or the source data have somehow relocated. It’s just that the temporary cursor execution scratch area, where the final data structure was put for presentation (kxsFrame4kPage chunk in UGA), just happened to be allocated from different locations for the two different executions.
There may be exceptions, but as long as the ADDR resides in SGA, I’d say it’s the actual location of where the data lives – but when it’s in UGA/PGA, it may be just the temporary cursor scratch area and the source data was taken from somewhere else (especially when the ADDR constantly changes or alternates between 2-3 different variants when repeatedly running your X$ query). Note that there are X$ tables which intentionally read data from arrays in your UGA (the actual source data lives in the UGA or PGA itself), but more about that in the future.
Related Posts
- Where is LOB data stored?
- Profiling trace files with preprocessor external tables in 11g and some parallel execution hacking
- Oracle In-Memory Column Store Internals – Part 1 – Which SIMD extensions are getting…
- Oracle Exadata Performance series – Part 1: Should I use Hugepages on Linux Database Nodes?
- When do Oracle Parallel Execution Slaves issue buffered physical reads – Part 2?

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The retention period of Oracle database logs depends on the log type and configuration, including: Redo logs: determined by the maximum size configured with the "LOG_ARCHIVE_DEST" parameter. Archived redo logs: Determined by the maximum size configured by the "DB_RECOVERY_FILE_DEST_SIZE" parameter. Online redo logs: not archived, lost when the database is restarted, and the retention period is consistent with the instance running time. Audit log: Configured by the "AUDIT_TRAIL" parameter, retained for 30 days by default.

The Oracle database startup sequence is: 1. Check the preconditions; 2. Start the listener; 3. Start the database instance; 4. Wait for the database to open; 5. Connect to the database; 6. Verify the database status; 7. Enable the service (if necessary ); 8. Test the connection.

The amount of memory required by Oracle depends on database size, activity level, and required performance level: for storing data buffers, index buffers, executing SQL statements, and managing the data dictionary cache. The exact amount is affected by database size, activity level, and required performance level. Best practices include setting the appropriate SGA size, sizing SGA components, using AMM, and monitoring memory usage.

To find the number of occurrences of a character in Oracle, perform the following steps: Get the total length of a string; Get the length of the substring in which a character occurs; Count the number of occurrences of a character by subtracting the substring length from the total length.

Oracle database server hardware configuration requirements: Processor: multi-core, with a main frequency of at least 2.5 GHz. For large databases, 32 cores or more are recommended. Memory: At least 8GB for small databases, 16-64GB for medium sizes, up to 512GB or more for large databases or heavy workloads. Storage: SSD or NVMe disks, RAID arrays for redundancy and performance. Network: High-speed network (10GbE or higher), dedicated network card, low-latency network. Others: Stable power supply, redundant components, compatible operating system and software, heat dissipation and cooling system.

Oracle can read dbf files through the following steps: create an external table and reference the dbf file; query the external table to retrieve data; import the data into the Oracle table.

The amount of memory required for an Oracle database depends on the database size, workload type, and number of concurrent users. General recommendations: Small databases: 16-32 GB, Medium databases: 32-64 GB, Large databases: 64 GB or more. Other factors to consider include database version, memory optimization options, virtualization, and best practices (monitor memory usage, adjust allocations).

To create a scheduled task in Oracle that executes once a day, you need to perform the following three steps: Create a job. Add a subjob to the job and set its schedule expression to "INTERVAL 1 DAY". Enable the job.
