update优化一条。
原语句 update HAHA a set (td03_flag) = (select td03_flag from z_temp1 b where a.user_id = b.user_id and lx = pz) Plan hash value: 1855602026 SQL_ID 62h7a9s7yyr18, child number 0------------------------------------- update HAHA a set (td03_
原语句
update HAHA a set (td03_flag) = (select td03_flag
from z_temp1 b where a.user_id = b.user_id and lx = 'pz')Plan hash value: 1855602026
SQL_ID 62h7a9s7yyr18, child number 0 ------------------------------------- update HAHA a set (td03_flag) = (select td03_flag from z_temp1 b where a.user_id = b.user_id and lx = 'pz') Plan hash value: 1855602026 ------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------- | 0 | UPDATE STATEMENT | | | | 8720M(100)| | | 1 | UPDATE | HAHA | | | | | | 2 | TABLE ACCESS FULL | HAHA | 2094K| 51M| 5404 (3)| 00:01:05 | | 3 | TABLE ACCESS BY INDEX ROWID | Z_TEMP1 | 24383 | 714K| 4163 (2)| 00:00:50 | | 4 | BITMAP CONVERSION TO ROWIDS | | | | | | | 5 | BITMAP AND | | | | | | | 6 | BITMAP CONVERSION FROM ROWIDS| | | | | | |* 7 | INDEX RANGE SCAN | Z_TEMP1_U | 2438K| | 3 (0)| 00:00:01 | | 8 | BITMAP CONVERSION FROM ROWIDS| | | | | | |* 9 | INDEX RANGE SCAN | Z_TEMP1_L | 2438K| | 4108 (2)| 00:00:50 | ------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 7 - access("B"."USER_ID"=:B1) 9 - access("LX"='pz') 我们可以看第7步的谓词7 - access("B"."USER_ID"=:B1) 这种:B1 是一个变量,变量就有输入源,这里的变量的输入源就是第2步中的每一行
我们就可以简单理解为,就是第2步有多少条语句,第三步就要执行多少次(7是第三步的子步骤,从这一步开始,一直执行完整个 第3步) 这种行为即是Nested loop。
虽然这里有索引,但这里的整个过程,是 两个位图索引 bitmap and,并且会回表,都是单块读,其中回表的单块读在这里占大头(每次都有24383个单块读)的。 我们从统计信息看到 步骤2 有2094K 行 我们可以简单认为, 第三步 这个整个步骤(bitmap and +回表) 被整个执行了 2094K即200多万次。 不慢才怪优化后语句
explain plan for merge into HAHA a
using (select td03_flag, user_id
from z_temp1 b
where user_id in (select user_id
from HAHA where lx='pz')
) h
on (a.user_id = h.user_id)
when matched then
update set a.td03_flag = h.td03_flag;
这里需要创建两个索引
create index HAHA_IDX on HAHA(lx,user_id) ;
create index z_temp1_ind_uidtd03 on z_temp1(userid,td03_flag) ;
优化前SQL2个小时还没跑完
之后虽然执行时间对方没有反馈,但对方也没有再喊叫 看来满足需求了:)
优化虽易,乙方不易,且行且珍惜

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

After several pre-releases, the KDE Plasma development team unveiled version 6.0 of its desktop environment for Linux and BSD systems on 28 February, using the Qt6 framework for the first time. KDE Plasma 6.1 now comes with a number of new features t

When we use the win10 system, we sometimes encounter situations where the computer becomes stuck. Then when we check the background process, we find that a Microsoftcompatibilitytelemetry process takes up a particularly high amount of resources. So what is going on? Users can try to uninstall the third-party protection software and then try a clean boot to operate. Let this site carefully introduce to users the solution to the high CPU usage of Microsoftcompatibilitytelemetry. Solution to the high CPU usage of Microsoftcompatibilitytelemetry Method 1: Try after uninstalling the third-party protection software

Time complexity measures the execution time of an algorithm relative to the size of the input. Tips for reducing the time complexity of C++ programs include: choosing appropriate containers (such as vector, list) to optimize data storage and management. Utilize efficient algorithms such as quick sort to reduce computation time. Eliminate multiple operations to reduce double counting. Use conditional branches to avoid unnecessary calculations. Optimize linear search by using faster algorithms such as binary search.

The Fitbit Ace LTE was officially launched in May, but is currently only available in the US. The smartwatch is aimed specifically at children, who can receive rewards for games through a more active lifestyle, while parents can always monitor their

Laravel performance bottleneck revealed: optimization solution revealed! With the development of Internet technology, the performance optimization of websites and applications has become increasingly important. As a popular PHP framework, Laravel may face performance bottlenecks during the development process. This article will explore the performance problems that Laravel applications may encounter, and provide some optimization solutions and specific code examples so that developers can better solve these problems. 1. Database query optimization Database query is one of the common performance bottlenecks in Web applications. exist

Vivox100s parameter configuration revealed: How to optimize processor performance? In today's era of rapid technological development, smartphones have become an indispensable part of our daily lives. As an important part of a smartphone, the performance optimization of the processor is directly related to the user experience of the mobile phone. As a high-profile smartphone, Vivox100s's parameter configuration has attracted much attention, especially the optimization of processor performance has attracted much attention from users. As the "brain" of the mobile phone, the processor directly affects the running speed of the mobile phone.

1. Press the key combination (win key + R) on the desktop to open the run window, then enter [regedit] and press Enter to confirm. 2. After opening the Registry Editor, we click to expand [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer], and then see if there is a Serialize item in the directory. If not, we can right-click Explorer, create a new item, and name it Serialize. 3. Then click Serialize, then right-click the blank space in the right pane, create a new DWORD (32) bit value, and name it Star

Five ways to optimize PHP function efficiency: avoid unnecessary copying of variables. Use references to avoid variable copying. Avoid repeated function calls. Inline simple functions. Optimizing loops using arrays.
