Home > Database > Mysql Tutorial > 日志表设计一例分析

日志表设计一例分析

WBOY
Release: 2016-06-07 15:56:37
Original
1485 people have browsed it

关于关系表的设计归根结底有两个方面。 窄表:log_ytt mysql show create table log_ytt; +-------------+--------------------------------------------------------------------------------------------------------------------------------------------

关于关系表的设计归根结底有两个方面。
窄表:log_ytt
mysql> show create table log_ytt; +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Table | Create Table | +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | log_ytt | CREATE TABLE `log_ytt` ( `ids` bigint(20) DEFAULT NULL, `log_time` datetime DEFAULT NULL, KEY `idx_u1` (`ids`,`log_time`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec)

mysql> select * from log_ytt where ids > '4875000001'; +------------+---------------------+ | ids | log_time | +------------+---------------------+ | 7110000001 | 2014-05-20 21:56:42 | | 6300000001 | 2014-05-20 21:56:42 | | 6750000001 | 2014-05-20 21:56:42 | | 5310000001 | 2014-05-20 21:56:42 | | 7200000001 | 2014-05-20 21:56:42 | | 7380000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-20 21:56:42 | | 6930000001 | 2014-05-20 21:56:42 | | 6660000001 | 2014-05-20 21:56:42 | | 5670000001 | 2014-05-20 21:56:42 | | 6210000001 | 2014-05-20 21:56:42 | | 5850000001 | 2014-05-20 21:56:42 | | 6570000001 | 2014-05-20 21:56:42 | | 5580000001 | 2014-05-20 21:56:42 | | 5130000001 | 2014-05-20 21:56:42 | | 7290000001 | 2014-05-20 21:56:42 | | 6390000001 | 2014-05-20 21:56:42 | | 5490000001 | 2014-05-20 21:56:42 | | 5220000001 | 2014-05-20 21:56:42 | | 7560000001 | 2014-05-20 21:56:42 | | 7470000001 | 2014-05-20 21:56:42 | | 7020000001 | 2014-05-20 21:56:42 | | 6840000001 | 2014-05-20 21:56:42 | | 6030000001 | 2014-05-20 21:56:42 | | 6480000001 | 2014-05-20 21:56:42 | | 7650000001 | 2014-05-20 21:56:42 | | 5940000001 | 2014-05-20 21:56:42 | | 6120000001 | 2014-05-20 21:56:42 | | 7740000001 | 2014-05-20 21:56:42 | | 5400000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-21 03:19:07 | | 6840000001 | 2014-05-21 03:19:17 | | 7020000001 | 2014-05-21 03:19:32 | | 7200000001 | 2014-05-21 03:19:45 | | 7110000001 | 2014-05-21 03:19:46 | | 7380000001 | 2014-05-21 03:19:48 | | 5670000001 | 2014-05-21 03:19:58 | | 6930000001 | 2014-05-21 03:19:59 | | 6030000001 | 2014-05-21 03:20:00 | | 5940000001 | 2014-05-21 03:20:00 | | 7290000001 | 2014-05-21 03:20:02 | | 6120000001 | 2014-05-21 03:20:09 | | 5850000001 | 2014-05-21 03:20:18 | | 5580000001 | 2014-05-21 03:20:24 | | 6480000001 | 2014-05-21 03:25:05 | | 6390000001 | 2014-05-21 03:25:37 | | 6210000001 | 2014-05-21 03:25:45 | | 7470000001 | 2014-05-21 03:26:14 | | 6750000001 | 2014-05-21 03:27:17 | | 5310000001 | 2014-05-21 03:27:33 | | 5130000001 | 2014-05-21 03:27:34 | | 6570000001 | 2014-05-21 03:27:34 | | 7560000001 | 2014-05-21 03:27:45 | | 5220000001 | 2014-05-21 03:27:45 | | 5400000001 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-21 03:27:55 | | 6660000001 | 2014-05-21 03:28:07 | | 6300000001 | 2014-05-21 03:28:13 | | 7740000001 | 2014-05-21 03:28:26 | | 7650000001 | 2014-05-21 03:28:37 | +------------+---------------------+ 60 rows in set (0.00 sec)
接下来,我们要检索所有IDS的平均时间。 有以下两种方式:

mysql> select sec_to_time(avg(timestampdiff(second,a.times,b.times))) as 'running' -> from -> (select ids,min(log_time) as times from log_ytt where 1 group by ids ) as a, -> (select ids,max(log_time) as times from log_ytt where 1 group by ids) as b where a.ids = b.ids; +---------------+ | running | +---------------+ | 05:27:08.8333 | +---------------+ 1 row in set (0.00 sec)
Copy after login
第二,虽然对表进行了最少的访问,但是也有一次GROUP BY 操作。也没办法,表设计如此。
mysql> SELECT SEC_TO_TIME(AVG(times)) AS 'Running' FROM -> ( -> SELECT TIMESTAMPDIFF(SECOND,MIN(log_time),MAX(log_time)) AS times FROM log_ytt GROUP BY ids -> ) AS T; +---------------+ | Running | +---------------+ | 05:27:08.8333 | +---------------+ 1 row in set (0.00 sec)
Copy after login
宽表:log_ytt_horizontal.
mysql> show create table log_ytt_horizontal; +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Table | Create Table | +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | log_ytt_horizontal | CREATE TABLE `log_ytt_horizontal` ( `ids` bigint(20) NOT NULL, `start_time` datetime DEFAULT NULL, `end_time` datetime DEFAULT NULL, PRIMARY KEY (`ids`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec)
Copy after login
表记录数:
mysql> select * from log_ytt_horizontal; +------------+---------------------+---------------------+ | ids | start_time | end_time | +------------+---------------------+---------------------+ | 5130000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 5220000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 5310000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:33 | | 5400000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:55 | | 5580000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:24 | | 5670000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:58 | | 5760000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:07 | | 5850000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:18 | | 5940000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6030000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6120000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:09 | | 6210000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:45 | | 6300000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:13 | | 6390000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:37 | | 6480000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:05 | | 6570000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 6660000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:07 | | 6750000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:17 | | 6840000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:17 | | 6930000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:59 | | 7020000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:32 | | 7110000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:46 | | 7200000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:45 | | 7290000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:02 | | 7380000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:48 | | 7470000001 | 2014-05-20 21:56:42 | 2014-05-21 03:26:14 | | 7560000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 7650000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:37 | | 7740000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:26 | +------------+---------------------+---------------------+ 30 rows in set (0.00 sec)
Copy after login
如果对这种稍微冗余一些的表来进行查询,那么对表的访问以及CPU的资源占用都达到了最低。
mysql> select sec_to_time(avg(timestampdiff(second,start_time,end_time))) as 'Running' from log_ytt_horizontal; +---------------+ | Running | +---------------+ | 05:27:08.8333 | +---------------+ 1 row in set (0.00 sec)
Copy after login
Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template