Mongodb之insert瞬时完成,带测试数据---飞天博客
这几天在看mongdb官网,然后经运行插入数据,突然发现这个数据确实很强大,这里用数据说话,我用的普通pc机,amd的双核 2.7GHz,4G内存,当然在测试的时候系统不是只作为数据库服务器的,还运行了myeclipse,qq,杀毒软件什么的,当然在测试的时候cpu大约是9
这几天在看mongdb官网,然后经运行插入数据,突然发现这个数据确实很强大,这里用数据说话,我用的普通pc机,amd的双核 2.7GHz,4G内存,当然在测试的时候系统不是只作为数据库服务器的,还运行了myeclipse,qq,杀毒软件什么的,当然在测试的时候cpu大约是95%的负载
具体什么结果呢?
刚开始测的时候,没注意,一下启动了10个线程,每个线程插10000条数据,结果,系统不堪负载,断电黑屏了,这电脑有点问题。这下囧了;
好吧,然后在慢慢的摸索之下,插入10000条数据,改为插入1000条数据,10个线程改为100个线程,测试结果如下:mongodb 100个线程,每个线程insert 1000次,76760 ms 一分10s的样子。关系型数据库还是很厉害的
然后我又具体测试了一下500个线程,每个线程同时插入10条记录,请看下面记录:下面的格式为:线程id:线程完成时间;总共结束时间:5542
262:645 | 173:4896 | 388:5057 | 57:5351 |
460:561 | 222:4874 | 102:5230 | 149:5387 |
18:2183 | 298:4752 | 109:5233 | 384:5179 |
456:2105 | 301:4768 | 386:5059 | 396:5181 |
46:3060 | 176:4895 | 289:5126 | 32:5352 |
412:2851 | 189:4918 | 268:5132 | 437:4935 |
448:2909 | 133:4933 | 209:5259 | 444:4935 |
462:3363 | 231:4919 | 140:5259 | 101:5357 |
425:3423 | 91:4900 | 348:5116 | 459:4939 |
461:3417 | 72:4898 | 249:5260 | 418:4938 |
458:3507 | 365:4748 | 73:5239 | 451:4940 |
450:3544 | 221:4941 | 389:5074 | 147:5399 |
452:3585 | 99:4927 | 148:5265 | 142:5398 |
428:3662 | 299:4816 | 152:5275 | 404:5193 |
454:3735 | 241:4951 | 286:5119 | 166:5396 |
423:3820 | 243:4967 | 28:5242 | 51:5366 |
259:4270 | 119:4969 | 45:5246 | 202:5367 |
349:4139 | 19:5002 | 107:5249 | 489:4632 |
421:3872 | 363:4792 | 247:5269 | 484:4632 |
188:4285 | 223:4973 | 103:5249 | 442:4948 |
96:4284 | 383:4801 | 245:5271 | 435:4949 |
414:4049 | 25:5023 | 391:5086 | 491:4637 |
426:3881 | 227:4998 | 86:5250 | 495:4637 |
424:3945 | 371:4822 | 83:5252 | 497:4638 |
416:4122 | 225:5008 | 160:5283 | 143:5413 |
33:4384 | 367:4831 | 354:5101 | 499:4641 |
379:4228 | 52:4990 | 116:5253 | 145:5417 |
420:3983 | 179:5019 | 50:5253 | 493:4644 |
310:4275 | 422:4605 | 382:5082 | 480:4646 |
131:4428 | 256:5003 | 90:5256 | 482:4647 |
201:4427 | 121:5070 | 29:5257 | 485:4647 |
67:4410 | 123:5074 | 380:5085 | 487:4648 |
203:4496 | 261:5054 | 242:5259 | 93:5385 |
252:4550 | 39:5057 | 43:5260 | 138:5421 |
308:4477 | 233:5092 | 78:5260 | 483:4653 |
343:4493 | 35:5076 | 127:5287 | 481:4654 |
403:4448 | 417:4723 | 95:5265 | 157:5425 |
3:4685 | 430:4661 | 385:5103 | 465:4659 |
306:4495 | 237:5109 | 183:5290 | 406:5217 |
401:4456 | 125:5111 | 251:5288 | 469:4662 |
230:4626 | 253:5111 | 376:5093 | 471:4664 |
419:4225 | 229:5120 | 64:5268 | 476:4657 |
110:4627 | 239:5120 | 378:5097 | 477:4660 |
94:4640 | 235:5126 | 248:5256 | 467:4664 |
38:4639 | 36:5105 | 270:5168 | 479:4661 |
405:4483 | 273:5006 | 269:5171 | 478:4660 |
126:4659 | 272:4987 | 295:5165 | 473:4670 |
294:4541 | 360:4958 | 181:5298 | 463:4672 |
364:4508 | 192:5122 | 337:5162 | 472:4661 |
134:4681 | 362:4963 | 361:5120 | 408:5228 |
320:4557 | 113:5125 | 198:5278 | 470:4664 |
284:4560 | 62:5126 | 236:5280 | 468:4664 |
359:4538 | 150:5155 | 207:5303 | 79:5404 |
357:4540 | 117:5135 | 373:5120 | 141:5441 |
358:4541 | 7:5200 | 41:5281 | 474:4674 |
296:4575 | 88:5141 | 372:5107 | 429:4986 |
53:4701 | 5:5208 | 10:5351 | 466:4670 |
13:4772 | 114:5143 | 400:5110 | 56:5407 |
54:4708 | 328:5019 | 58:5282 | 431:4987 |
266:4614 | 55:5146 | 312:5160 | 427:4989 |
297:4610 | 283:5040 | 14:5359 | 486:4673 |
255:4741 | 282:5021 | 395:5127 | 475:4684 |
197:4743 | 70:5146 | 369:5132 | 488:4672 |
300:4596 | 316:5024 | 65:5292 | 159:5449 |
375:4563 | 351:5028 | 84:5293 | 492:4675 |
195:4749 | 274:5025 | 156:5326 | 494:4674 |
200:4731 | 254:5138 | 263:5294 | 410:5242 |
69:4731 | 49:5155 | 196:5297 | 490:4677 |
292:4607 | 279:5049 | 144:5330 | 139:5453 |
120:4739 | 336:5033 | 210:5299 | 409:5252 |
311:4628 | 212:5160 | 158:5329 | 433:4997 |
40:4739 | 11:5224 | 281:5194 | 464:4681 |
98:4742 | 250:5146 | 129:5324 | 498:4679 |
37:4744 | 97:5165 | 169:5337 | 208:5422 |
66:4742 | 399:5003 | 162:5332 | 496:4681 |
213:4769 | 74:5171 | 370:5128 | 12:5492 |
106:4748 | 285:5065 | 353:5182 | 500:4677 |
215:4774 | 187:5197 | 394:5131 | 76:5423 |
171:4777 | 340:5050 | 167:5341 | 180:5426 |
350:4632 | 124:5175 | 455:4885 | 333:5313 |
63:4755 | 112:5178 | 185:5331 | 318:5302 |
104:4755 | 47:5180 | 368:5136 | 322:5302 |
288:4630 | 194:5182 | 151:5345 | 218:5428 |
9:4822 | 352:5060 | 163:5348 | 228:5428 |
303:4646 | 75:5183 | 118:5313 | 130:5428 |
68:4757 | 100:5183 | 153:5349 | 238:5431 |
87:4765 | 34:5183 | 338:5190 | 204:5432 |
214:4766 | 332:5062 | 324:5190 | 111:5434 |
366:4591 | 271:5083 | 154:5347 | 27:5434 |
122:4766 | 71:5193 | 377:5156 | 6:5504 |
217:4795 | 258:5179 | 390:5145 | 60:5434 |
244:4784 | 246:5180 | 265:5216 | 182:5438 |
240:4786 | 184:5197 | 4:5389 | 8:5508 |
44:4788 | 161:5218 | 164:5349 | 26:5437 |
287:4703 | 307:5084 | 267:5217 | 331:5327 |
339:4701 | 309:5083 | 1:5394 | 42:5440 |
407:4650 | 15:5263 | 155:5357 | 313:5330 |
193:4839 | 132:5198 | 330:5200 | 24:5439 |
260:4810 | 277:5093 | 342:5200 | 92:5443 |
186:4821 | 257:5220 | 436:4903 | 329:5331 |
128:4819 | 135:5243 | 453:4906 | 345:5323 |
341:4706 | 30:5199 | 447:4908 | 290:5320 |
178:4823 | 397:5037 | 172:5360 | 234:5447 |
335:4709 | 314:5080 | 432:4909 | 327:5334 |
146:4842 | 326:5080 | 445:4912 | 278:5322 |
305:4717 | 80:5205 | 443:4912 | 276:5323 |
226:4831 | 85:5207 | 168:5364 | 325:5339 |
302:4707 | 211:5231 | 402:5161 | 356:5296 |
220:4837 | 77:5210 | 174:5360 | 319:5343 |
224:4837 | 31:5210 | 434:4913 | 381:5292 |
199:4861 | 293:5100 | 446:4916 | 264:5450 |
347:4718 | 22:5210 | 441:4918 | 89:5457 |
219:4865 | 280:5087 | 438:4918 | 108:5457 |
190:4844 | 20:5211 | 457:4920 | 232:5458 |
355:4692 | 315:5108 | 439:4921 | 82:5458 |
115:4848 | 137:5260 | 440:4920 | 16:5514 |
411:4628 | 393:5058 | 398:5172 | 136:5500 |
17:4903 | 48:5221 | 449:4923 | 346:5338 |
413:4637 | 334:5100 | 2:5416 | 291:5352 |
177:4884 | 392:5052 | 21:5400 | 323:5351 |
415:4639 | 206:5226 | 374:5174 | 321:5351 |
61:4864 | 105:5227 | 387:5184 | 344:5340 |
304:4739 | 216:5228 | 23:5402 | 317:5352 |
175:4889 | 59:5228 | 165:5385 | 191:5489 |
275:4764 | 205:5252 | 170:5380 | 81:5467 |
我这台机器上最大连接数为:500,所以没测试更多,但是看到这上面的效率是很好的啦,前面的线程几乎是秒插入进去。如果要做个500个人同时注册,单机mongodb就是小case。当然加大它的连接数。注意,这是连接数,不是MongoClient的个数,默认实例化mongClient的个数是为1的
从后台可以看到:db.mydb.count() 结果为:5000,说明这次测试结果全部没有出差错,速度之快,当然不用说,也查了一下原因,但和我做的实验实际还是有点出入:
资料如下:
但mongodb的这种操作,客户端将文档发送给服务器之后就like干别的了。客户端也收不到“好的,知道了”或者“有问题,能重新传送一遍嘛?”这类响应。这个特点的有点很明显,速度块,这些操作都会非常块的;但服务器如果出问题,客户端不知道,比如服务器奔溃,断电什么的,客户端还是会继续发送写操作。
但是我下的这个mongodb,还是有出入的,因为当我关闭服务器,客户端报错了!!!证明服务器出问题还是会被检测到。至于发送写操作能否验证是否成功,这个问题,java驱动会返回一个WriterResult结果,里面可以返回最近一次出错信息,想必这个版本默认就设置了“安全操作”,也就是说,插入操作会返回信息,待用户判断是否将上一次为插入成功的数据再一次插入进数据库。“安全操作”在我看来还是很快的,如果将“安全操作”设置为“非安全操作”版,插入速度应该会更快
这里附上mongodb的java驱动之crud
public class MongoTest { public static void main(String[] args) throws UnknownHostException { MongoClient mongoClient = new MongoClient( "localhost" , 30000 ); DB db = mongoClient.getDB( "mytest" ); // 返回当前的数据库名称 // Set<String> colls = db.getCollectionNames(); // // for (String s : colls) { // System.out.println(s); // } DBCollection collection=db.getCollection("test"); BasicDBObject doc = new BasicDBObject("name", "xiaohua2"); collection.insert(doc); System.out.println(collection.count()); mongoClient.close(); /* //得到一个集合,这个集合就是用来做crud的接口 DBCollection coll = db.getCollection("mydb"); //插入一个document,和sql的表差不多 //The _id element has been added automatically by MongoDB to your document. //Remember, MongoDB reserves element names that start with “_”/”$” for internal use BasicDBObject doc = new BasicDBObject("name", "MongoDB") .append("type", "database") .append("count", 1) .append("info", new BasicDBObject("x", 203).append("y", 102)); coll.insert(doc); //得到第一条document DBObject myDoc = coll.findOne(); System.out.println(myDoc); //多条数据插入 for (int i=0; i < 100; i++) { coll.insert(new BasicDBObject("i", i)); } //统计document的行数 System.out.println(coll.getCount()); //使用游标 DBCursor cursor = coll.find(); try { while(cursor.hasNext()) { System.out.println(cursor.next()); } } finally { cursor.close(); } mongoClient.close(); //查询 // BasicDBObject query = new BasicDBObject("i", 71); // cursor = coll.find(query); // // try { // while(cursor.hasNext()) { // System.out.println(cursor.next()); // } // } finally { // cursor.close(); // } */ } }
注意记得将mongoclient close掉
备注,如果转载:请标明出处blog.csdn.net/xh199110 飞天博客
如果有写的不对的地方,欢迎指正。作者也是看官网,查资料,加上自己的理解,写了这篇文章,以便大家一起来学习,谢谢

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Facing lag, slow mobile data connection on iPhone? Typically, the strength of cellular internet on your phone depends on several factors such as region, cellular network type, roaming type, etc. There are some things you can do to get a faster, more reliable cellular Internet connection. Fix 1 – Force Restart iPhone Sometimes, force restarting your device just resets a lot of things, including the cellular connection. Step 1 – Just press the volume up key once and release. Next, press the Volume Down key and release it again. Step 2 – The next part of the process is to hold the button on the right side. Let the iPhone finish restarting. Enable cellular data and check network speed. Check again Fix 2 – Change data mode While 5G offers better network speeds, it works better when the signal is weaker

Node.js is a server-side JavaScript runtime, while Vue.js is a client-side JavaScript framework for creating interactive user interfaces. Node.js is used for server-side development, such as back-end service API development and data processing, while Vue.js is used for client-side development, such as single-page applications and responsive user interfaces.

I cry to death. The world is madly building big models. The data on the Internet is not enough. It is not enough at all. The training model looks like "The Hunger Games", and AI researchers around the world are worrying about how to feed these data voracious eaters. This problem is particularly prominent in multi-modal tasks. At a time when nothing could be done, a start-up team from the Department of Renmin University of China used its own new model to become the first in China to make "model-generated data feed itself" a reality. Moreover, it is a two-pronged approach on the understanding side and the generation side. Both sides can generate high-quality, multi-modal new data and provide data feedback to the model itself. What is a model? Awaker 1.0, a large multi-modal model that just appeared on the Zhongguancun Forum. Who is the team? Sophon engine. Founded by Gao Yizhao, a doctoral student at Renmin University’s Hillhouse School of Artificial Intelligence.

Recently, the military circle has been overwhelmed by the news: US military fighter jets can now complete fully automatic air combat using AI. Yes, just recently, the US military’s AI fighter jet was made public for the first time and the mystery was unveiled. The full name of this fighter is the Variable Stability Simulator Test Aircraft (VISTA). It was personally flown by the Secretary of the US Air Force to simulate a one-on-one air battle. On May 2, U.S. Air Force Secretary Frank Kendall took off in an X-62AVISTA at Edwards Air Force Base. Note that during the one-hour flight, all flight actions were completed autonomously by AI! Kendall said - "For the past few decades, we have been thinking about the unlimited potential of autonomous air-to-air combat, but it has always seemed out of reach." However now,

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

The 2024QS World University Rankings by Subject is here! Overall, there is little change from 2023. According to the official website information, the 2024QS World University Rankings by Subject covers 55 subdivisions and 5 major academic fields. A total of 1,559 universities participated in the ranking, 64 of which are new faces this year (that is, they will not appear in the 2023 ranking). Among these 64 colleges and universities, 14 are truly appearing for the first time. Among them is the University of Chinese Academy of Sciences. According to the refined subjects, Music is a new subject introduced this year. In addition, the data science and artificial intelligence rankings have been expanded, with 51 new universities added to the rankings. The top five in the overall list are: Massachusetts Institute of Technology, University of Cambridge, University of Oxford, and Harvard University

The "Inaction Test" of the new fantasy fairy MMORPG "Zhu Xian 2" will be launched on April 23. What kind of new fairy adventure story will happen in Zhu Xian Continent thousands of years after the original work? The Six Realm Immortal World, a full-time immortal academy, a free immortal life, and all kinds of fun in the immortal world are waiting for the immortal friends to explore in person! The "Wuwei Test" pre-download is now open. Fairy friends can go to the official website to download. You cannot log in to the game server before the server is launched. The activation code can be used after the pre-download and installation is completed. "Zhu Xian 2" "Inaction Test" opening hours: April 23 10:00 - May 6 23:59 The new fairy adventure chapter of the orthodox sequel to Zhu Xian "Zhu Xian 2" is based on the "Zhu Xian" novel as a blueprint. Based on the world view of the original work, the game background is set

FP8 and lower floating point quantification precision are no longer the "patent" of H100! Lao Huang wanted everyone to use INT8/INT4, and the Microsoft DeepSpeed team started running FP6 on A100 without official support from NVIDIA. Test results show that the new method TC-FPx's FP6 quantization on A100 is close to or occasionally faster than INT4, and has higher accuracy than the latter. On top of this, there is also end-to-end large model support, which has been open sourced and integrated into deep learning inference frameworks such as DeepSpeed. This result also has an immediate effect on accelerating large models - under this framework, using a single card to run Llama, the throughput is 2.65 times higher than that of dual cards. one
