手把手教你用Docker部署一个MongoDB集群
MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中最像关系数据库的。支持类似于面向对象的查询语言,几
【编者的话】MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中最像关系数据库的。支持类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。本文介绍了如何使用Docker搭建MongoDB集群。
本文我会向大家介绍如何使用Docker部署一个MongoDB集群,具体如下:
首先要准备三个运行的Docker服务器,这意味着你要准备一个安装了Docker的本地Vagrant Box虚拟机(系统可以使用CoreOS)或者使用AWS或者其它的你喜欢的方式。
步骤 Step1你要拿到3台Docker服务器的IP地址,并且将下面给出的IP地址配置到所有的服务器上面,每一台服务器都要执行如下命令(记得要替换掉IP地址哦):
root@node root@node理想情况下你并不需要这么做,这些IP都是可以通过DNS自动配置好的。但是这样会更加简单,,毕竟这只是一次安装测试。
Step2为每个节点创建密钥文件。在其中某一台服务器上面执行如下的命令,然后把密钥文件复制到其余两个服务器的同样的位置。
在这个教程中,我将把所有的东西都放在“/home/core”文件夹中。
core root@node core root@node keyfile root@node keyfile root@node这个密钥文件的所有者被设置成id为“999”的用户了,因为在MongoDB的Docker容器中,这个用户需要有操作密钥文件的权限。
Step3启动node1(即第一台Docker服务器)的MongoDB容器。它会启动一个没有身份验证机制的容器,所以我们要设置一个用户。
name mongo \ db \ keyfile \ \ \现在创建一个admin用户。我们可以连接到刚刚启动的mongoDB容器,并进入一个交互式的shell环境.
这时候,我们就进到MongoDB的Docker容器里面了,然后我们要打开一个mongo shell环境:
上面的命令可以打开mongo shell环境。执行后你会看到这样的输出:
connecting to: test see http http切换到admin用户:
admin switched to db admin创建一个新的site admin 用户
user pwd roles创建成功的话你会看到如下的成功信息:
{ } ]}
创建一个root用户:
user pwd roles你会看到如下的成功信息:
{ } ]}
我们已经创建好了我们以后要使用的几个用户,现在我们不会退出交互式shell环境(mongo和Docker容器的环境)。
bye root@node1 Step4停止第一个MongoDB实例:
Step5这次使用密钥文件启动第一台MongoDB实例(还是在node1上面操作的)。
root@node1:/# docker rm mongo root@node1:/# docker run \ --name mongo \ db \ keyfile \ \ \ \ \ \ --smallfiles \ keyfile \注意:
连接到副本集上并且安装配置好它。这还是在node1上面进行的。我们要开启另外一个新的交互式shell环境进入mongo容器,同时开启一个mongo shell环境:
bash root@node1:/# mongo切换到admin用户下:
admin switched to db admin因为我们已经设置了一个密码,所以这次我们不得不做身份验证。我们把密码设置为:password。
现在我们可以开启副本集:
Step7验证已经初始化的副本集的配置:
> rs0 r { } ]} Step8
在其余的两个节点启动MongoDB。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
