Home > Database > Mysql Tutorial > Mongodb基础入门(3)排序和索引

Mongodb基础入门(3)排序和索引

WBOY
Release: 2016-06-07 16:13:07
Original
1015 people have browsed it

今天继续Mongodb,简单的记录下其排序和索引的使用。 在Mongodb中使用sort()方法对数据进行排序。 命令格式:db.collectionName.find().sort({key:参数}) 参数说明: -1:表示降序 1:表示升序(默认) doc集合中数据如下: db.doc.find({},{_id:0,goods_id:1

今天继续Mongodb,简单的记录下其排序和索引的使用。

在Mongodb中使用sort()方法对数据进行排序。

命令格式:db.collectionName.find().sort({key:参数})

参数说明:

-1:表示降序

1:表示升序(默认)

doc集合中数据如下:

> db.doc.find({},{_id:0,goods_id:1})

{ "goods_id" : 1 }

{ "goods_id" : 4 }

{ "goods_id" : 3 }

{ "goods_id" : 5 }

{ "goods_id" : 6 }

{ "goods_id" : 7 }

{ "goods_id" : 8 }

{ "goods_id" : 9 }

{ "goods_id" : 10 }

{ "goods_id" : 11 }

{ "goods_id" : 12 }

> db.doc.find({},{_id:0,goods_id:1}).sort({goods_id:1})

\

 

索引

1、 简介

和mysql数据类似,为了提高查询效率,Mongodb也提供索引的支持。在Mongodb中,索引可以按照字段进行升序/降序来创建,以便于排序。当然,Mongodb默认采用B-tree方式来索引。

按索引作用类型可分为:

1、 单列索引:在单个键上创建索引。

2、 组合索引:在多个键上同时创建索引,也叫多列索引。

3、 文档索引:任何类型,包括文档(document)都可以作为索引。

索引的性质可以分:

1、 普通索引:普通方式创建的索引。注意:Mongodb存在默认的_id的键,相当于主键。集合在创建之后,系统会自动在_id创建索引,该索引为系统默认,无法删除。

2、 唯一索引:某列为唯一索引时,不能添加重复文档。注意,如果文档不存在指定字段时,会将该字段默认为null,而null也会被认为重复。

3、 稀疏索引:和稀疏矩阵类似,稀疏索引就是将含有某个字段的文档进行索引,不包含该字段的文档则进行索引。一般在小部分文档含有某列时常用。

4、 哈希索引:2.4版本新增的索引方式。相比于普通索引,其速度更快。但是无法对范围查询进行优化。多用于随机性比较强的散列当中。

2、 查看索引

db.collectionName.getIndexes()

3、 创建索引

A、 创建普通单列索引:默认是升序索引,采用B-tree方式

db.collectionName.ensureIndex({field:1/-1})//1:升序;-1:降序

B、 创建多列索引:

db.collectionName.ensureIndex({field1:1/-1,field2:1/-1})

C、 创建文档索引:

A)创建普通文档索引

db.collectionName.ensureIndex({filed:1/-1})

> db.users.insert({name:"god",info:{city:"NewYork",state:"happy"}})

WriteResult({"nInserted" : 1 })

>db.users.ensureIndex({info:1})//将整个info文档作为索引

{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

}

>db.users.getIndexes()

[

{

"v" : 1,

"key" : {

"_id" : 1

},

"name" : "_id_",

"ns" : "test.users"

},

{

"v" : 1,

"key" : {

"info" : 1

},

"name" : "info_1",

"ns" : "test.users"

}

]

注意:在使用索引查询的时候需要按照事先文档字段的顺序。

> db.users.find({info:{city:"NewYork",state:"happy"}})//能够利用索引查到结果

{ "_id" :ObjectId("54a79a1bc289fc3b6fcc719a"), "name" :"god", "info" : { "city

" : "NewYork", "state" : "happy" } }

 

>db.users.find({info:{$gte:{city:"New York"}}})//能够利用索引查到结果

{ "_id" :ObjectId("54a79a1bc289fc3b6fcc719a"), "name" :"god", "info" : { "city

" : "NewYork", "state" : "happy" } }

 

>db.users.find({info:{state:"happy",city:"New York"}})//不能利用索引查到结果

 

B)创建子文档索引

db.collectionName.ensureIndex({filed.subfield:1/-1})

> db.users.ensureIndex({"info.city":1})

{

"createdCollectionAutomatically" : false,

"numIndexesBefore" : 1,

"numIndexesAfter" : 2,

"ok" : 1

}

>db.users.getIndexes()

[

{

"v" : 1,

"key" : {

"_id" : 1

},

"name" : "_id_",

"ns" : "test.users"

},

{

"v" : 1,

"key" : {

"info.city" : 1

},

"name" : "info.city_1",

"ns" : "test.users"

}

]

 

D、创建唯一索引:可以针对多列创建唯一索引

db.collectinName.ensureIndex({filed.subfield:1/-1},{unique:true})

E、创建稀疏索引:

db.collectionName.ensureIndex({filed:1/-1},{sparse:true})

F、 创建哈希索引:可以对单个字段或字文档建立hash索引,不能针对多个列。

db.collectionName.ensureIndex({field:”hash”})

 

4、 删除索引

A、删除单个索引:

db.collectionName.dropIndex({filed:1/-1})

B、删除所有索引:_id列的索引不会删除。

db.collectionName.dropIndexes()

注意:在关系数据库中,表被删除后,索引随之删除。

而在Monodb中删除集合,索引仍然存在,因此需要手动删除索引。

 

5、 重建索引

一个集合在经过多次修改之后,将会导致集合的文件产生碎片。同样索引文件也会如此。因此可以通过索引的重建来减少索引文件碎片,提高索引效率。和mysql中的optimize table类似。命令:db.collectionName.reIndex().

 

索引的管理

1、查询所有索引:

system.indexes集合中包含了每个索引的详细信息,因此可以通过该命令:

db.system.indexes.find()查询已经存在的索引.

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.doc" }

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.category" }

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.tea" }

{"v" : 1, "key" : { "email" : 1 },"name" : "sparse:1", "ns" : "test.tea"}

{"v" : 1, "key" : { "_id" : 1 }, "name": "_id_", "ns" : "test.users" }

{"v" : 1, "key" : { "info.city" : 1 },"name" : "info.city_1", "ns" :"test.users" }

 

2、查看查询计划:

为了分析查询性能及索引,一边获得更多查询方面有用的信息,可以使用如下命令:

db.collectionName.find(查询表达式).explain()

\

"cursor" :"BasicCursor" ——>表示索引没有发挥作用

"nscanned":1 ——>表示查询了多少个文档。
"n",:1 ——>表示返回的文档数量。
"millis":0 ——>表示整个查询的耗时。

"nscannedObjects" : 11, ——>理论上需要扫描多少行

 

3、后台创建索引

为已有数据的文档创建索引时,为了不阻塞其他操作,同时可以在后台创建索引,可以使用命令:db.test.ensureIndex({filed:1/-1},{"background":true})

相比阻塞创建索引而言,后台创建索引效率较低。

 

 

注意

1、如果数据集合比较小(一般来说是4m一下),此时如果使用sort()进行排序就不需要使用索引。

2、在使用组合索引查询时,查询字段的顺序必须和事先创建索引时的顺序保持一致。否则会出现上文提到的出现查不到的情况。

 

 

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template