MySQL模拟条件索引
strong Table ytt.girl1 Column | Type | Modifiers --------+---------+-------------------- id | integer | not null rank | integer | not null default 0 Indexes: girl1_pkey PRIMARY KEY, btree (id) idx_girl1_rank btree (rank) WHERE rank = 10 AN
Table "ytt.girl1"
Column | Type | Modifiers
--------+---------+--------------------
id | integer | not null
rank | integer | not null default 0
Indexes:
"girl1_pkey" PRIMARY KEY, btree (id)
"idx_girl1_rank" btree (rank) WHERE rank >= 10 AND rank
执行的查询语句为:
select * from girl1 where rank between 20 and 60 limit 20;
用了全部索引的查询计划:
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.29..36.58 rows=20 width=8) (actual time=0.024..0.054 rows=20 loops=1)
-> Index Scan using idx_girl1_rank on girl1 (cost=0.29..421.26 rows=232 width=8) (actual time=0.023..0.044 rows=20 loops=1)
Index Cond: ((rank >= 20) AND (rank
Total runtime: 0.087 ms
(4 rows)
Time: 1.881 ms
用了条件索引的查询计划:
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------
Limit (cost=0.28..35.54 rows=20 width=8) (actual time=0.036..0.068 rows=20 loops=1)
-> Index Scan using idx_girl1_rank on girl1 (cost=0.28..513.44 rows=291 width=8) (actual time=0.033..0.061 rows=20 loops=1)
Index Cond: ((rank >= 20) AND (rank
Total runtime: 0.106 ms
(4 rows)
Time: 0.846 ms
ytt>show create table girl1_filtered_index; +----------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Table | Create Table | +----------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | girl1_filtered_index | CREATE TABLE `girl1_filtered_index` ( `id` int(11) NOT NULL, `rank` int(11) NOT NULL DEFAULT '0', PRIMARY KEY (`id`), KEY `idx_rank` (`rank`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 | +----------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (0.00 sec) 接下来,对基础表的更新操作做下修改,创建了三个触发器。 DELIMITER $$ USE `t_girl`$$ DROP TRIGGER /*!50032 IF EXISTS */ `filtered_insert`$$ CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER `filtered_insert` AFTER INSERT ON `girl1` FOR EACH ROW BEGIN IF new.rank BETWEEN 10 AND 100 THEN INSERT INTO girl1_filtered_index VALUES (new.id,new.rank); END IF; END; $$ DELIMITER ; DELIMITER $$ USE `t_girl`$$ DROP TRIGGER /*!50032 IF EXISTS */ `filtered_update`$$ CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER `filtered_update` AFTER UPDATE ON `girl1` FOR EACH ROW BEGIN IF new.rank BETWEEN 10 AND 100 THEN REPLACE girl1_filtered_index VALUES (new.id,new.rank); ELSE DELETE FROM girl1_filtered_index WHERE id = old.id; END IF; END; $$ DELIMITER ; DELIMITER $$ USE `t_girl`$$ DROP TRIGGER /*!50032 IF EXISTS */ `filtered_delete`$$ CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER `filtered_delete` AFTER DELETE ON `girl1` FOR EACH ROW BEGIN DELETE FROM girl1_filtered_index WHERE id = old.id; END; $$ DELIMITER ; OK,,我们导入测试数据。 ytt>load data infile 'girl1.txt' into table girl1 fields terminated by ','; Query OK, 100000 rows affected (1.05 sec) Records: 100000 Deleted: 0 Skipped: 0 Warnings: 0 ytt>select count(*) from girl1; +----------+ | count(*) | +----------+ | 100000 | +----------+ 1 row in set (0.04 sec) ytt>select count(*) from girl1_filtered_index; +----------+ | count(*) | +----------+ | 640 | +----------+ 1 row in set (0.00 sec)
select a.id,a.rank from girl1 as a where a.id in (select b.id from girl1_filtered_index as b where b.rank between 20 and 60) limit 20;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
