Home > Database > Mysql Tutorial > 伪分布式安装部署CDH4.2.1与Impala[原创实践]

伪分布式安装部署CDH4.2.1与Impala[原创实践]

WBOY
Release: 2016-06-07 16:30:18
Original
1681 people have browsed it

参考资料: http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Quick-Start/cdh4qs_topic_3_3.html http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/Installing

参考资料:
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Quick-Start/cdh4qs_topic_3_3.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Using-Impala/Installing-and-Using-Impala.html
http://blog.cloudera.com/blog/2013/02/from-zero-to-impala-in-minutes/

什么是Impala?
Cloudera发布了实时查询开源项目Impala,根据多款产品实测表明,它比原来基于MapReduce的Hive SQL查询速度提升3~90倍。Impala是Google Dremel的模仿,但在SQL功能上青出于蓝胜于蓝。

1. 安装JDK
$ sudo yum install jdk-6u41-linux-amd64.rpm

2. 伪分布式模式安装CDH4
$ cd /etc/yum.repos.d/
$ sudo wget http://archive.cloudera.com/cdh4/redhat/6/x86_64/cdh/cloudera-cdh4.repo
$ sudo yum install hadoop-conf-pseudo

格式化NameNode.
$ sudo -u hdfs hdfs namenode -format

启动HDFS
$ for x in `cd /etc/init.d ; ls hadoop-hdfs-*` ; do sudo service $x start ; done

创建/tmp目录
$ sudo -u hdfs hadoop fs -rm -r /tmp
$ sudo -u hdfs hadoop fs -mkdir /tmp
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp

创建YARN与日志目录
$ sudo -u hdfs hadoop fs -mkdir /tmp/hadoop-yarn/staging
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp/hadoop-yarn/staging

$ sudo -u hdfs hadoop fs -mkdir /tmp/hadoop-yarn/staging/history/done_intermediate
$ sudo -u hdfs hadoop fs -chmod -R 1777 /tmp/hadoop-yarn/staging/history/done_intermediate

$ sudo -u hdfs hadoop fs -chown -R mapred:mapred /tmp/hadoop-yarn/staging

$ sudo -u hdfs hadoop fs -mkdir /var/log/hadoop-yarn
$ sudo -u hdfs hadoop fs -chown yarn:mapred /var/log/hadoop-yarn

检查HDFS文件树
$ sudo -u hdfs hadoop fs -ls -R /

drwxrwxrwt - hdfs supergroup 0 2012-05-31 15:31 /tmp
drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /tmp/hadoop-yarn
drwxrwxrwt - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging
drwxr-xr-x - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging/history
drwxrwxrwt - mapred mapred 0 2012-05-31 15:31 /tmp/hadoop-yarn/staging/history/done_intermediate
drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /var
drwxr-xr-x - hdfs supergroup 0 2012-05-31 15:31 /var/log
drwxr-xr-x - yarn mapred 0 2012-05-31 15:31 /var/log/hadoop-yarn
Copy after login

启动YARN
$ sudo service hadoop-yarn-resourcemanager start
$ sudo service hadoop-yarn-nodemanager start
$ sudo service hadoop-mapreduce-historyserver start

创建用户目录(以用户dong.guo为例):
$ sudo -u hdfs hadoop fs -mkdir /user/dong.guo
$ sudo -u hdfs hadoop fs -chown dong.guo /user/dong.guo

测试上传文件
$ hadoop fs -mkdir input
$ hadoop fs -put /etc/hadoop/conf/*.xml input
$ hadoop fs -ls input

Found 4 items
-rw-r--r--   1 dong.guo supergroup       1461 2013-05-14 03:30 input/core-site.xml
-rw-r--r--   1 dong.guo supergroup       1854 2013-05-14 03:30 input/hdfs-site.xml
-rw-r--r--   1 dong.guo supergroup       1325 2013-05-14 03:30 input/mapred-site.xml
-rw-r--r--   1 dong.guo supergroup       2262 2013-05-14 03:30 input/yarn-site.xml
Copy after login

配置HADOOP_MAPRED_HOME环境变量
$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce

运行一个测试Job
$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar grep input output23 'dfs[a-z.]+'

Job完成后,可以看到以下目录
$ hadoop fs -ls

Found 2 items
drwxr-xr-x   - dong.guo supergroup          0 2013-05-14 03:30 input
drwxr-xr-x   - dong.guo supergroup          0 2013-05-14 03:32 output23
Copy after login

$ hadoop fs -ls output23

Found 2 items
-rw-r--r--   1 dong.guo supergroup          0 2013-05-14 03:32 output23/_SUCCESS
-rw-r--r--   1 dong.guo supergroup        150 2013-05-14 03:32 output23/part-r-00000
Copy after login

$ hadoop fs -cat output23/part-r-00000 | head

1	dfs.safemode.min.datanodes
1	dfs.safemode.extension
1	dfs.replication
1	dfs.namenode.name.dir
1	dfs.namenode.checkpoint.dir
1	dfs.datanode.data.dir
Copy after login

3. 安装 Hive
$ sudo yum install hive hive-metastore hive-server

$ sudo yum install mysql-server

$ sudo service mysqld start

$ cd ~
$ wget 'http://cdn.mysql.com/Downloads/Connector-J/mysql-connector-java-5.1.25.tar.gz'
$ tar xzf mysql-connector-java-5.1.25.tar.gz
$ sudo cp mysql-connector-java-5.1.25/mysql-connector-java-5.1.25-bin.jar /usr/lib/hive/lib/

$ sudo /usr/bin/mysql_secure_installation

[...]
Enter current password for root (enter for none):
OK, successfully used password, moving on...
[...]
Set root password? [Y/n] y
New password:hadoophive
Re-enter new password:hadoophive
Remove anonymous users? [Y/n] Y
[...]
Disallow root login remotely? [Y/n] N
[...]
Remove test database and access to it [Y/n] Y
[...]
Reload privilege tables now? [Y/n] Y
All done!
Copy after login

$ mysql -u root -phadoophive

mysql> CREATE DATABASE metastore;
mysql> USE metastore;
mysql> SOURCE /usr/lib/hive/scripts/metastore/upgrade/mysql/hive-schema-0.10.0.mysql.sql;
mysql> CREATE USER 'hive'@'%' IDENTIFIED BY 'hadoophive';
mysql> CREATE USER 'hive'@'localhost' IDENTIFIED BY 'hadoophive';
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'%';
mysql> REVOKE ALL PRIVILEGES, GRANT OPTION FROM 'hive'@'localhost';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'%';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,LOCK TABLES,EXECUTE ON metastore.* TO 'hive'@'localhost';
mysql> FLUSH PRIVILEGES;
mysql> quit;
Copy after login

$ sudo mv /etc/hive/conf/hive-site.xml /etc/hive/conf/hive-site.xml.bak
$ sudo vim /etc/hive/conf/hive-site.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="http://heylinux.com/archives/configuration.xsl"?>
  javax.jdo.option.ConnectionURL
  jdbc:mysql://localhost/metastore
  the URL of the MySQL database
  javax.jdo.option.ConnectionDriverName
  com.mysql.jdbc.Driver
  javax.jdo.option.ConnectionUserName
  hive
  javax.jdo.option.ConnectionPassword
  hadoophive
  datanucleus.autoCreateSchema
  false
  datanucleus.fixedDatastore
  true
  hive.metastore.uris
  thrift://127.0.0.1:9083
  IP address (or fully-qualified domain name) and port of the metastore host
  hive.aux.jars.path
  file:///usr/lib/hive/lib/zookeeper.jar,file:///usr/lib/hive/lib/hbase.jar,file:///usr/lib/hive/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar,file:///usr/lib/hive/lib/guava-11.0.2.jar
Copy after login

$ sudo service hive-metastore start

Starting (hive-metastore):                                 [  OK  ]
Copy after login

$ sudo service hive-server start

Starting (hive-server):                                    [  OK  ]
Copy after login

$ sudo -u hdfs hadoop fs -mkdir /user/hive
$ sudo -u hdfs hadoop fs -chown hive /user/hive
$ sudo -u hdfs hadoop fs -mkdir /tmp
$ sudo -u hdfs hadoop fs -chmod 777 /tmp
$ sudo -u hdfs hadoop fs -chmod o+t /tmp
$ sudo -u hdfs hadoop fs -mkdir /data
$ sudo -u hdfs hadoop fs -chown hdfs /data
$ sudo -u hdfs hadoop fs -chmod 777 /data
$ sudo -u hdfs hadoop fs -chmod o+t /data

$ sudo chown -R hive:hive /var/lib/hive
$ sudo vim /tmp/kv1.txt

1	www.baidu.com
2	www.google.com
3	www.sina.com.cn
4	www.163.com
5	heylinx.com
Copy after login

$ sudo -u hive hive

Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties
Hive history file=/tmp/root/hive_job_log_root_201305140801_825709760.txt
hive> CREATE TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n";
hive> show tables;
OK
pokes
Time taken: 0.415 seconds
hive> LOAD DATA LOCAL INPATH '/tmp/kv1.txt' OVERWRITE INTO TABLE pokes;
Copying data from file:/tmp/kv1.txt
Copying file: file:/tmp/kv1.txt
Loading data to table default.pokes
rmr: DEPRECATED: Please use 'rm -r' instead.
Deleted /user/hive/warehouse/pokes
Table default.pokes stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 79, raw_data_size: 0]
OK
Time taken: 1.681 seconds
Copy after login

$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce

4. 安装 Impala
$ cd /etc/yum.repos.d/
$ sudo wget http://archive.cloudera.com/impala/redhat/6/x86_64/impala/cloudera-impala.repo
$ sudo yum install impala impala-shell
$ sudo yum install impala-server impala-state-store

$ sudo vim /etc/hadoop/conf/hdfs-site.xml

...
   dfs.client.read.shortcircuit
   true
   dfs.domain.socket.path
   /var/run/hadoop-hdfs/dn._PORT
   dfs.client.file-block-storage-locations.timeout
   3000    
  dfs.datanode.hdfs-blocks-metadata.enabled
  true
Copy after login

$ sudo cp -rpa /etc/hadoop/conf/core-site.xml /etc/impala/conf/
$ sudo cp -rpa /etc/hadoop/conf/hdfs-site.xml /etc/impala/conf/

$ sudo service hadoop-hdfs-datanode restart

$ sudo service impala-state-store restart
$ sudo service impala-server restart

$ sudo /usr/java/default/bin/jps

5. 安装 Hbase
$ sudo yum install hbase

$ sudo vim /etc/security/limits.conf

hdfs - nofile 32768
hbase - nofile 32768
Copy after login

$ sudo vim /etc/pam.d/common-session

session required pam_limits.so
Copy after login

$ sudo vim /etc/hadoop/conf/hdfs-site.xml

  dfs.datanode.max.xcievers
  4096
Copy after login

$ sudo cp /usr/lib/impala/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar /usr/lib/hive/lib/hive-hbase-handler-0.10.0-cdh4.2.0.jar

$ sudo /etc/init.d/hadoop-hdfs-namenode restart
$ sudo /etc/init.d/hadoop-hdfs-datanode restart

$ sudo yum install hbase-master
$ sudo service hbase-master start

$ sudo -u hive hive

Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties
Hive history file=/tmp/hive/hive_job_log_hive_201305140905_2005531704.txt
hive> CREATE TABLE hbase_table_1(key int, value string) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val") TBLPROPERTIES ("hbase.table.name" = "xyz");
OK
Time taken: 3.587 seconds
hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=5;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1368502088579_0004, Tracking URL = http://ip-10-197-10-4:8088/proxy/application_1368502088579_0004/
Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1368502088579_0004
Hadoop job information for Stage-0: number of mappers: 1; number of reducers: 0
2013-05-14 09:12:45,340 Stage-0 map = 0%,  reduce = 0%
2013-05-14 09:12:53,165 Stage-0 map = 100%,  reduce = 0%, Cumulative CPU 2.63 sec
MapReduce Total cumulative CPU time: 2 seconds 630 msec
Ended Job = job_1368502088579_0004
1 Rows loaded to hbase_table_1
MapReduce Jobs Launched: 
Job 0: Map: 1   Cumulative CPU: 2.63 sec   HDFS Read: 288 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 630 msec
OK
Time taken: 21.063 seconds
hive> select * from hbase_table_1;
OK
5	heylinx.com
Time taken: 0.685 seconds
hive> SELECT COUNT (*) FROM pokes;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapred.reduce.tasks=<number>
Starting Job = job_1368502088579_0005, Tracking URL = http://ip-10-197-10-4:8088/proxy/application_1368502088579_0005/
Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1368502088579_0005
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2013-05-14 10:32:04,711 Stage-1 map = 0%,  reduce = 0%
2013-05-14 10:32:11,461 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:12,554 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:13,642 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:14,760 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:15,918 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:16,991 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:18,111 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 1.22 sec
2013-05-14 10:32:19,188 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 4.04 sec
MapReduce Total cumulative CPU time: 4 seconds 40 msec
Ended Job = job_1368502088579_0005
MapReduce Jobs Launched: 
Job 0: Map: 1  Reduce: 1   Cumulative CPU: 4.04 sec   HDFS Read: 288 HDFS Write: 2 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 40 msec
OK
5
Time taken: 28.195 seconds
</number></number></number>
Copy after login

6. 测试Impala性能
View parameters on http://ec2-204-236-182-78.us-west-1.compute.amazonaws.com:25000

$ impala-shell

[ip-10-197-10-4.us-west-1.compute.internal:21000] > CREATE TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n";
Query: create TABLE IF NOT EXISTS pokes ( foo INT,bar STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t" LINES TERMINATED BY "\n"
[ip-10-197-10-4.us-west-1.compute.internal:21000] > show tables;
Query: show tables
Query finished, fetching results ...
+-------+
| name  |
+-------+
| pokes |
+-------+
Returned 1 row(s) in 0.00s
[ip-10-197-10-4.us-west-1.compute.internal:21000] > SELECT * from pokes;
Query: select * from pokes
Query finished, fetching results ...
+-----+-----------------+
| foo | bar             |
+-----+-----------------+
| 1   | www.baidu.com   |
| 2   | www.google.com  |
| 3   | www.sina.com.cn |
| 4   | www.163.com     |
| 5   | heylinx.com     |
+-----+-----------------+
Returned 5 row(s) in 0.28s
[ip-10-197-10-4.us-west-1.compute.internal:21000] > SELECT COUNT (*) from pokes;
Query: select COUNT (*) from pokes
Query finished, fetching results ...
+----------+
| count(*) |
+----------+
| 5        |
+----------+
Returned 1 row(s) in 0.34s
Copy after login

通过两个COUNT的结果来看,Hive使用了 28.195 seconds 而 Impala仅使用了0.34s,由此可以看出Impala的性能确实要优于Hive。

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template