Home > Database > Mysql Tutorial > Hadoop之MapReduce单元测试

Hadoop之MapReduce单元测试

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
Release: 2016-06-07 16:31:12
Original
1371 people have browsed it

通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数。而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0)。 下面是一个简单的WordCount例子:(使用的是新API) 在开始之

通常情况下,我们需要用小数据集来单元测试我们写好的map函数和reduce函数。而一般我们可以使用Mockito框架来模拟OutputCollector对象(Hadoop版本号小于0.20.0)和Context对象(大于等于0.20.0)。

下面是一个简单的WordCount例子:(使用的是新API)

在开始之前,需要导入以下包:

1.Hadoop安装目录下和lib目录下的所有jar包。

2.JUnit4

3.Mockito

?

map函数:

public class WordCountMapper extends Mapper {
	private static final IntWritable one = new IntWritable(1);
	private Text word = new Text();
	@Override
	protected void map(LongWritable key, Text value,Context context)
			throws IOException, InterruptedException {
		String line = value.toString();		// 该行的内容
		String[] words = line.split(";");	// 解析该行的单词
		for(String w : words) {
			word.set(w);
			context.write(word,one);
		}
	}
}
Copy after login

?reduce函数:

public class WordCountReducer extends Reducer {
	@Override
	protected void reduce(Text key, Iterable values,Context context)
			throws IOException, InterruptedException {
		int sum = 0;
		Iterator iterator = values.iterator();		// key相同的值集合
		while(iterator.hasNext()) {
			int one = iterator.next().get();
			sum += one;
		}
		context.write(key, new IntWritable(sum));
	}
}
Copy after login

?测试代码类:

public class WordCountMapperReducerTest {
	@Test
	public void processValidRecord() throws IOException, InterruptedException {
		WordCountMapper mapper = new WordCountMapper();
		Text value = new Text("hello");
		org.apache.hadoop.mapreduce.Mapper.Context context = mock(Context.class);
		mapper.map(null, value, context);
		verify(context).write(new Text("hello"), new IntWritable(1));
	}
	@Test
	public void processResult() throws IOException, InterruptedException {
		WordCountReducer reducer = new WordCountReducer();
		Text key = new Text("hello");
		// {"hello",[1,1,2]}
		Iterable values = Arrays.asList(new IntWritable(1),new IntWritable(1),new IntWritable(2));
		org.apache.hadoop.mapreduce.Reducer.Context context = mock(org.apache.hadoop.mapreduce.Reducer.Context.class);
		reducer.reduce(key, values, context);
		verify(context).write(key, new IntWritable(4));		// {"hello",4}
	}
}
Copy after login

?

具体就是给map函数传入一行数据-"hello"

map函数对数据进行处理,输出{"hello",0}

reduce函数接受map函数的输出数据,对相同key的值求和,并输出。



已有 0 人发表留言,猛击->> 这里

ITeye推荐
  • —软件人才免语言低担保 赴美带薪读研!—



Hadoop之MapReduce单元测试

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template