Home Database Mysql Tutorial Efficient Indexing in MongoDB 2.6

Efficient Indexing in MongoDB 2.6

Jun 07, 2016 pm 04:35 PM
mongodb

By Osmar Olivo, Product Manager at MongoDB One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Havi

By Osmar Olivo, Product Manager at MongoDB

One of the most powerful features of MongoDB is its rich indexing functionality. Users can specify secondary indexes on any field, compound indexes, geospatial, text, sparse, TTL, and others. Having extensive indexing functionality makes it easier for developers to build apps that provide rich functionality and low latency.

MongoDB 2.6 introduces a new query planner, including the ability to perform index intersection. Prior to 2.6 the query planner could only make use of a single index for most queries. That meant that if you wanted to query on multiple fields together, you needed to create a compound index. It also meant that if there were several different combinations of fields you wanted to query on, you might need several different compound indexes.

Each index adds overhead to your deployment - indexes consume space, on disk and in RAM, and indexes are maintained during updates, which adds disk IO. In other words, indexes improve the efficiency of many operations, but they also come at a cost. For many applications, index intersection will allow users to reduce the number of indexes they need while still providing rich features and low latency.

In the following sections we will take a deep dive into index intersection and how it can be applied to applications.

An Example - The Phone Book

Let’s take the example of a phone book with the following schema.

{
    FirstName
    LastName
    Phone_Number
    Address
}
Copy after login

If I were to search for “Smith, John” how would I index the following query to be as efficient as possible?

db.phonebook.find({ FirstName : “John”, LastName : “Smith” })
Copy after login

I could use an individual index on FirstName and search for all of the “Johns”.

This would look something like ensureIndex( { FirstName : 1 } )

We run this query and we get back 200,000 John Smiths. Looking at the explain() output below however, we see that we scanned 1,000,000 “Johns” in the process of finding 200,000 “John Smiths”.

> db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 1000000,
    "nscanned" : 1000000,
    "nscannedObjectsAllPlans" : 1000101,
    "nscannedAllPlans" : 1000101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 2,
    "nChunkSkips" : 0,
    "millis" : 2043,
    "indexBounds" : {
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

How about creating an individual index on LastName?

This would look something like ensureIndex( { LastName : 1 } )

Running this query we get back 200,000 “John Smiths” but our explain output says that we now scanned 400,000 “Smiths”. How can we make this better?

db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 400000,
    "nscanned" : 400000,
    "nscannedObjectsAllPlans" : 400101,
    "nscannedAllPlans" : 400101,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 1,
    "nChunkSkips" : 0,
    "millis" : 852,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

So we know that there are 1,000,000 “John” entries, 400,000 “Smith” entries, and 200,000 “John Smith” entries in our phonebook. Is there a way that we can scan just the 200,000 we need?

In the case of a phone book this is somewhat simple; since we know that we want it to be sorted by Lastname, Firstname we can create a compound index on them, like the below.

ensureIndex( {  LastName : true, FirstName : 1  } ) 
db.phonebook.find({ FirstName : "John", LastName : "Smith"}).explain()
{
    "cursor" : "BtreeCursor LastName_1_FirstName_1",
    "isMultiKey" : false,
    "n" : 200000,
    "nscannedObjects" : 200000,
    "nscanned" : 200000,
    "nscannedObjectsAllPlans" : 200000,
    "nscannedAllPlans" : 200000,
    "scanAndOrder" : false,
    "indexOnly" : false,
    "nYields" : 0,
    "nChunkSkips" : 0,
    "millis" : 370,
    "indexBounds" : {
        "LastName" : [
            [
                "Smith",
                "Smith"
            ]
        ],
        "FirstName" : [
            [
                "John",
                "John"
            ]
        ]
    },
    "server" : "Oz-Olivo-MacBook-Pro.local:27017"
}
Copy after login

Looking at the explain on this, we see that the index only scanned the 200,000 documents that matched, so we got a perfect hit.

Beyond Compound Indexes

The compound index is a great solution in the case of a phonebook in which we always know how we are going to be querying our data. Now what if we have an application in which users can arbitrarily query for different fields together? We can’t possibly create a compound index for every possible combination because of the overhead imposed by indexes, as we discussed above, and because MongoDB limits you to 64 indexes per collection. Index intersection can really help.

Imagine the case of a medical application which doctors use to filter through patients. At a high level, omitting several details, a basic schema may look something like the below.

{
      Fname
      LName
      SSN
      Age
      Blood_Type
      Conditions : [] 
      Medications : [ ]
      ...
      ...
}
Copy after login

Some sample searches that a doctor/nurse may run on this system would look something like the below.

Find me a Patient with Blood_Type = O under the age of 50

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Copy after login
Copy after login

Find me all patients over the age of 60 on Medication X

db.patients.find( { Medications : “X” , Age : { $gt : 60} })
Copy after login

Find me all Diabetic patients on medication Y

db.patients.find( { Conditions : “Diabetes”, Medications : “Y” } )
Copy after login

With all of the unstructured data in modern applications, along with the desire to be able to search for things as needed in an ad-hoc way, it can become very difficult to predict usage patterns. Since we can’t possibly create compound indexes for every combination of fields, because we don’t necessarily know what those will be ahead of time, we can try indexing individual fields to try to salvage some performance. But as shown above in our phone book application, this can lead to performance issues in which we pull documents into memory that are not matches.

To avoid the paging of unnecessary data, the new index intersection feature in 2.6 increases the overall efficiency of these types of ad-hoc queries by processing the indexes involved individually and then intersecting the result set to find the matching documents. This means you only pull the final matching documents into memory and everything else is processed using the indexes. This processing will utilize more CPU, but should greatly reduce the amount of IO done for queries where all of the data is not in memory as well as allow you to utilize your memory more efficiently.

For example, looking at the earlier example:

db.patients.find( {   Blood_Type : “O”,  Age : {   $lt : 50  }     } )
Copy after login
Copy after login

It is inefficient to find all patients with BloodType: O (which could be millions) and then pull into memory each document to find the ones with age

Instead, the query planner finds all patients with bloodType: O using the index on BloodType, and all patients with age

Index intersection allows for much more efficient use of existing RAM so less total memory will usually be required to fit the working set then previously. Also, if you had several compound indices that were made up of different combinations of fields, then you can reduce the total number of indexes on the system. This means storing less indices in memory as well as achieving better insert/update performance since fewer indices must be updated.

As of version 2.6.0, you cannot intersect with geo or text indices and you can intersect at most 2 separate indices with each other. These limitations are likely to change in a future release.

Optimizing Multi-key Indexes It is also possible to intersect an index with itself in the case of multi-key indexes. Consider the below query:

Find me all patients with Diabetes & High Blood Pressure

db.patients.find( {  Conditions : { $all : [ “Diabetes”, “High Blood Pressure” ]  }    }  )
Copy after login

In this case we will find the result set of all Patients with Diabetes, and the result set of all patients with High blood pressure, and intersect the two to get all patients with both. Again, this requires less memory and disk speed for better overall performance. As of the 2.6.0 release, an index can intersect with itself up to 10 times.

Do We Still Need Compound Indexes?

To be clear, compound indexing will ALWAYS be more performant IF you know what you are going to be querying on and can create one ahead of time. Furthermore, if your working set is entirely in memory, then you will not reap any of the benefits of Index Intersection as it is primarily based on reducing IO. But in a more ad-hoc case where one cannot predict the shape of the queries and the working set is much larger than available memory, index intersection will automatically take over and choose the most performant path.

  • Download MongoDB 2.6 Today
  • Learn about all of the key new features in MongoDB 2.6 by downloading the whitepaper
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Which version is generally used for mongodb? Which version is generally used for mongodb? Apr 07, 2024 pm 05:48 PM

It is recommended to use the latest version of MongoDB (currently 5.0) as it provides the latest features and improvements. When selecting a version, you need to consider functional requirements, compatibility, stability, and community support. For example, the latest version has features such as transactions and aggregation pipeline optimization. Make sure the version is compatible with the application. For production environments, choose the long-term support version. The latest version has more active community support.

The difference between nodejs and vuejs The difference between nodejs and vuejs Apr 21, 2024 am 04:17 AM

Node.js is a server-side JavaScript runtime, while Vue.js is a client-side JavaScript framework for creating interactive user interfaces. Node.js is used for server-side development, such as back-end service API development and data processing, while Vue.js is used for client-side development, such as single-page applications and responsive user interfaces.

Experience sharing on implementing real-time recommendation system using MongoDB Experience sharing on implementing real-time recommendation system using MongoDB Nov 03, 2023 pm 04:37 PM

With the development of the Internet, people's lives are becoming more and more digital, and the demand for personalization is becoming stronger and stronger. In this era of information explosion, users are often faced with massive amounts of information and have no choice, so the importance of real-time recommendation systems has become increasingly prominent. This article will share the experience of using MongoDB to implement a real-time recommendation system, hoping to provide some inspiration and help to developers. 1. Introduction to MongoDB MongoDB is an open source NoSQL database known for its high performance, easy scalability and flexible data model. Compared to biography

Where is the database created by mongodb? Where is the database created by mongodb? Apr 07, 2024 pm 05:39 PM

The data of the MongoDB database is stored in the specified data directory, which can be located in the local file system, network file system or cloud storage. The specific location is as follows: Local file system: The default path is Linux/macOS:/data/db, Windows: C:\data\db. Network file system: The path depends on the file system. Cloud Storage: The path is determined by the cloud storage provider.

What are the advantages of mongodb database What are the advantages of mongodb database Apr 07, 2024 pm 05:21 PM

The MongoDB database is known for its flexibility, scalability, and high performance. Its advantages include: a document data model that allows data to be stored in a flexible and unstructured way. Horizontal scalability to multiple servers via sharding. Query flexibility, supporting complex queries and aggregation operations. Data replication and fault tolerance ensure data redundancy and high availability. JSON support for easy integration with front-end applications. High performance for fast response even when processing large amounts of data. Open source, customizable and free to use.

What does mongodb mean? What does mongodb mean? Apr 07, 2024 pm 05:57 PM

MongoDB is a document-oriented, distributed database system used to store and manage large amounts of structured and unstructured data. Its core concepts include document storage and distribution, and its main features include dynamic schema, indexing, aggregation, map-reduce and replication. It is widely used in content management systems, e-commerce platforms, social media websites, IoT applications, and mobile application development.

How to open mongodb How to open mongodb Apr 07, 2024 pm 06:15 PM

On Linux/macOS: Create the data directory and start the "mongod" service. On Windows: Create the data directory and start the MongoDB service from Service Manager. In Docker: Run the "docker run" command. On other platforms: Please consult the MongoDB documentation. Verification method: Run the "mongo" command to connect and view the server version.

Where are the mongodb database files? Where are the mongodb database files? Apr 07, 2024 pm 05:42 PM

The MongoDB database file is located in the MongoDB data directory, which is /data/db by default, which contains .bson (document data), ns (collection information), journal (write operation records), wiredTiger (data when using the WiredTiger storage engine ) and config (database configuration information) and other files.

See all articles