Table of Contents
相关文章
Home Database Mysql Tutorial mysql中 innodb表的count()优化

mysql中 innodb表的count()优化

Jun 07, 2016 pm 04:37 PM
count innodb mysql optimization

作/译者:叶金荣(imysql#imysql.com),来源: http://imysql.com,欢迎转载。 起因:在innodb表上做count(*)统计实在是太慢了,因此想办法看能不能再快点。 现象:先来看几个测试案例,如下 一、 sbtest 表上的测试 show create table sbtest\G***********

作/译者:叶金荣(imysql#imysql.com>),来源: http://imysql.com,欢迎转载。

起因:在innodb表上做count(*)统计实在是太慢了,因此想办法看能不能再快点。
现象:先来看几个测试案例,如下
一、 sbtest 表上的测试

show create table sbtest\G
*************************** 1. row ***************************
Table: sbtest
Create Table: CREATE TABLE `sbtest` (
`aid` bigint(20) unsigned NOT NULL auto_increment,
`id` int(10) unsigned NOT NULL default '0',
`k` int(10) unsigned NOT NULL default '0',
`c` char(120) NOT NULL default '',
`pad` char(60) NOT NULL default '',
PRIMARY KEY  (`aid`),
KEY `k` (`k`),
KEY `id` (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1000001 DEFAULT CHARSET=latin1
show index from sbtest;
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| sbtest |          0 | PRIMARY  |            1 | aid         | A         |     1000099 |     NULL | NULL   |      | BTREE      |         |
| sbtest |          1 | k        |            1 | k           | A         |          18 |     NULL | NULL   |      | BTREE      |         |
| sbtest |          1 | id       |            1 | id          | A         |     1000099 |     NULL | NULL   |      | BTREE      |         |
+--------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
Copy after login

填充了 100万条 记录。
1、 直接 count(*)

explain SELECT COUNT(*) FROM sbtest;
+----+-------------+--------+-------+---------------+---------+---------+------+---------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows    | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+---------+-------------+
|  1 | SIMPLE      | sbtest | index | NULL          | PRIMARY | 8       | NULL | 1000099 | Using index |
+----+-------------+--------+-------+---------------+---------+---------+------+---------+-------------+
SELECT COUNT(*) FROM sbtest;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (1.42 sec)
Copy after login

可以看到,如果不加任何条件,那么优化器优先采用 primary key 来进行扫描。
2、count(*) 使用 primary key 字段做条件

explain SELECT COUNT(*) FROM sbtest WHERE aid>=0;
+----+-------------+--------+-------+---------------+---------+---------+------+--------+--------------------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows   | Extra                    |
+----+-------------+--------+-------+---------------+---------+---------+------+--------+--------------------------+
|  1 | SIMPLE      | sbtest | range | PRIMARY       | PRIMARY | 8       | NULL | 485600 | Using where; Using index |
+----+-------------+--------+-------+---------------+---------+---------+------+--------+--------------------------+
SELECT COUNT(*) FROM sbtest WHERE aid>=0;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (1.39 sec)
Copy after login

可以看到,尽管优化器认为只需要扫描 485600 条记录(其实是索引),比刚才少多了,但其实仍然要做全表(索引)扫描。因此耗时和第一种相当。

3、 count(*) 使用 secondary index 字段做条件

explain SELECT COUNT(*) FROM sbtest WHERE id>=0;
+----+-------------+--------+-------+---------------+------+---------+------+--------+--------------------------+
| id | select_type | table  | type  | possible_keys | key  | key_len | ref  | rows   | Extra                    |
+----+-------------+--------+-------+---------------+------+---------+------+--------+--------------------------+
|  1 | SIMPLE      | sbtest | range | id            | id   | 4       | NULL | 500049 | Using where; Using index |
+----+-------------+--------+-------+---------------+------+---------+------+--------+--------------------------+
SELECT COUNT(*) FROM sbtest WHERE id>=0;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (0.43 sec)
Copy after login

可以看到,采用这种方式查询会非常快。
有人也许会问了,会不会是因为 id 字段的长度比 aid 字段的长度来的小,导致它扫描起来比较快呢?先不着急下结论,咱们来看看下面的测试例子。
二、 sbtest1 表上的测试

show create table sbtest1\G
*************************** 1. row ***************************
Table: sbtest1
Create Table: CREATE TABLE `sbtest1` (
`aid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`id` bigint(20) unsigned NOT NULL DEFAULT '0',
`k` int(10) unsigned NOT NULL DEFAULT '0',
`c` char(120) NOT NULL DEFAULT '',
`pad` char(60) NOT NULL DEFAULT '',
PRIMARY KEY (`aid`),
KEY `k` (`k`),
KEY `id` (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1000001 DEFAULT CHARSET=latin1
show index from sbtest1;
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table   | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| sbtest1 |          0 | PRIMARY  |            1 | aid         | A         |     1000099 |     NULL | NULL   |      | BTREE      |         |
| sbtest1 |          1 | k        |            1 | k           | A         |          18 |     NULL | NULL   |      | BTREE      |         |
| sbtest1 |          1 | id       |            1 | id          | A         |     1000099 |     NULL | NULL   |      | BTREE      |         |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
Copy after login

这个表里,把 aid 和 id 的字段长度调换了一下,也填充了 1000万条 记录。
1、 直接 count(*)

explain SELECT COUNT(*) FROM sbtest1;
+----+-------------+---------+-------+---------------+---------+---------+------+---------+-------------+
| id | select_type | table   | type  | possible_keys | key     | key_len | ref  | rows    | Extra       |
+----+-------------+---------+-------+---------------+---------+---------+------+---------+-------------+
|  1 | SIMPLE      | sbtest1 | index | NULL          | PRIMARY | 4       | NULL | 1000099 | Using index |
+----+-------------+---------+-------+---------------+---------+---------+------+---------+-------------+
SELECT COUNT(*) FROM sbtest1;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (1.42 sec)
Copy after login

可以看到,如果不加任何条件,那么优化器优先采用 primary key 来进行扫描。
2、count(*) 使用 primary key 字段做条件

explain SELECT COUNT(*) FROM sbtest1 WHERE aid>=0;
+----+-------------+---------+-------+---------------+---------+---------+------+--------+--------------------------+
| id | select_type | table   | type  | possible_keys | key     | key_len | ref  | rows   | Extra                    |
+----+-------------+---------+-------+---------------+---------+---------+------+--------+--------------------------+
|  1 | SIMPLE      | sbtest1 | range | PRIMARY       | PRIMARY | 4       | NULL | 316200 | Using where; Using index |
+----+-------------+---------+-------+---------------+---------+---------+------+--------+--------------------------+
1 row in set (0.00 sec)
SELECT COUNT(*) FROM sbtest1 WHERE aid>=0;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (1.42 sec)
Copy after login

可以看到,尽管优化器认为只需要扫描 485600 条记录(其实是索引),比刚才少多了,但其实仍然要做全表(索引)扫描。因此耗时和第一种相当。

3、 count(*) 使用 secondary index 字段做条件

explain SELECT COUNT(*) FROM sbtest1 WHERE id>=0;
+----+-------------+---------+-------+---------------+------+---------+------+--------+--------------------------+
| id | select_type | table   | type  | possible_keys | key  | key_len | ref  | rows   | Extra                    |
+----+-------------+---------+-------+---------------+------+---------+------+--------+--------------------------+
|  1 | SIMPLE      | sbtest1 | range | id            | id   | 8       | NULL | 500049 | Using where; Using index |
+----+-------------+---------+-------+---------------+------+---------+------+--------+--------------------------+
1 row in set (0.00 sec)
SELECT COUNT(*) FROM sbtest1 WHERE id>=0;
+----------+
| COUNT(*) |
+----------+
|  1000000 |
+----------+
1 row in set (0.45 sec)
Copy after login

可以看到,采用这种方式查询会非常快。
上面的所有测试,均在 mysql 5.1.24 环境下通过,并且每次查询前都重启了 mysqld。
可以看到,把 aid 和 id 的长度调换之后,采用 secondary index 查询仍然是要比用 primary key 查询来的快很多。看来主要不是字段长度引起的索引扫描快慢,而是采用 primary key 以及 secondary index 引起的区别。那么,为什么用 secondary index 扫描反而比 primary key 扫描来的要快呢?我们就需要了解innodb的? clustered index?和 secondary index?之间的区别了。
innodb 的 clustered index 是把 primary key 以及 row data 保存在一起的,而 secondary index 则是单独存放,然后有个指针指向 primary key。因此,需要进行 count(*) 统计表记录总数时,利用 secondary index 扫描起来,显然更快。而primary key则主要在扫描索引,同时要返回结果记录时的作用较大,例如:

SELECT * FROM sbtest WHERE aid = xxx;
Copy after login

那既然是使用 secondary index 会比 primary key 更快,为何优化器却优先选择 primary key 来扫描呢, Heikki Tuuri?的回答是:

in the example table, the secondary index is inserted into in a perfect order! That is
very unusual. Normally the secondary index would be fragmented, causing random disk I/O,
and the scan would be slower than in the primary index.
I am changing this to a feature request: keep 'clustering ratio' statistics on a secondary
index and do the scan there if the order is almost the same as in the primary index. I
doubt this feature will ever be implemented, though.
Copy after login

详情请看: 这个 bug,以及这个文章: InnoDB Row Counting using Indexes。
最后感谢 老杨的帮助。

技术相关:?

MySQL优化

InnoDB

相关文章

  • 关于MySql explain 中的ID
  • mysql优化一般步聚(教程)
  • [存储引擎基础知识]InnoDB与MyISAM的六大区别
  • MySQL技术内幕:InnoDB存储-3.6 InnoDB存储引擎文件
  • MySQL之Handler_read_*

mysql中 innodb表的count()优化

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

The relationship between mysql user and database The relationship between mysql user and database Apr 08, 2025 pm 07:15 PM

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL: The Ease of Data Management for Beginners MySQL: The Ease of Data Management for Beginners Apr 09, 2025 am 12:07 AM

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.

Can I retrieve the database password in Navicat? Can I retrieve the database password in Navicat? Apr 08, 2025 pm 09:51 PM

Navicat itself does not store the database password, and can only retrieve the encrypted password. Solution: 1. Check the password manager; 2. Check Navicat's "Remember Password" function; 3. Reset the database password; 4. Contact the database administrator.

Query optimization in MySQL is essential for improving database performance, especially when dealing with large data sets Query optimization in MySQL is essential for improving database performance, especially when dealing with large data sets Apr 08, 2025 pm 07:12 PM

1. Use the correct index to speed up data retrieval by reducing the amount of data scanned select*frommployeeswherelast_name='smith'; if you look up a column of a table multiple times, create an index for that column. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

How to create navicat premium How to create navicat premium Apr 09, 2025 am 07:09 AM

Create a database using Navicat Premium: Connect to the database server and enter the connection parameters. Right-click on the server and select Create Database. Enter the name of the new database and the specified character set and collation. Connect to the new database and create the table in the Object Browser. Right-click on the table and select Insert Data to insert the data.

How to view mysql How to view mysql Apr 08, 2025 pm 07:21 PM

View the MySQL database with the following command: Connect to the server: mysql -u Username -p Password Run SHOW DATABASES; Command to get all existing databases Select database: USE database name; View table: SHOW TABLES; View table structure: DESCRIBE table name; View data: SELECT * FROM table name;

How to copy tables in mysql How to copy tables in mysql Apr 08, 2025 pm 07:24 PM

Copying a table in MySQL requires creating new tables, inserting data, setting foreign keys, copying indexes, triggers, stored procedures, and functions. The specific steps include: creating a new table with the same structure. Insert data from the original table into a new table. Set the same foreign key constraint (if the original table has one). Create the same index. Create the same trigger (if the original table has one). Create the same stored procedure or function (if the original table is used).

How to view database password in Navicat for MariaDB? How to view database password in Navicat for MariaDB? Apr 08, 2025 pm 09:18 PM

Navicat for MariaDB cannot view the database password directly because the password is stored in encrypted form. To ensure the database security, there are three ways to reset your password: reset your password through Navicat and set a complex password. View the configuration file (not recommended, high risk). Use system command line tools (not recommended, you need to be proficient in command line tools).

See all articles