Table of Contents
Development agility vs. database manageability
NoSQL business and data model design process
RDBMS data modeling influence on NoSQL
NoSQL data model variation
NoSQL data model visualization
New NoSQL data modeling opportunities
Home Database Mysql Tutorial NoSQL Data Modeling

NoSQL Data Modeling

Jun 07, 2016 pm 04:39 PM
data model nosql

Data modeling for RDBMS has been a well-defined discipline for many years. Techniques like logical to physical mapping and normalization / de-normalization have been widely practiced by professionals, including novice users. However, with

Data modeling for RDBMS has been a well-defined discipline for many years. Techniques like logical to physical mapping and normalization / de-normalization have been widely practiced by professionals, including novice users. However, with the recent emergence of NoSQL databases, data modeling is facing new challenges to its relevance. Generally speaking, NoSQL practitioners focus on physical data model design rather than the traditional conceptual / logical data model process for the following reasons:

  • Developer-centric mindset – With flexible schema (or schema-free) support in NoSQL databases, application developers typically assume data model design responsibility. They have been ingrained with the notion that the database schema is an integral part of application logic.
  • High-performance queries running in massive scale-out distributed environments – Contrary to traditional, centralized scale-up systems (including the RDBMS tier), modern applications run in distributed, scale-out environments. To accomplish scale-out, application developers are driven to tackle scalability and performance first through focused physical data model design, thus abandoning the traditional conceptual, logical, and physical data model design process.
  • Big and unstructured data – With its rigidly fixed schema and limited scale-out capability, the traditional RDBMS has long been criticized for its lack of support for big and unstructured data. By comparison, NoSQL databases were conceived from the beginning with the capability to store big and unstructured data using flexible schemas running in distributed scale-out environments.

In this blog post, we explore other important mindset changes in NoSQL data modeling: development agility through flexible schemas vs. database manageability; the business and data model design process; the role of RDBMS in NoSQL data modeling; NoSQL variations that affect data modeling; and visualization approaches for NoSQL logical and physical data modeling. We end the post with a peak into the NoSQL data modeling future.

Development agility vs. database manageability

One highly touted feature in today’s NoSQL is application development agility. Part of this agility is accomplished through flexible schemas, where developers have full control over how data is stored and organized in their NoSQL databases. Developers can create or modify database objects in application code on the fly without relying on DBA execution. The result is, indeed, increased application development and deployment agility.

However, the flexible schema is not without its challenges. For example, dynamically created database objects can cause unforeseen database management issues due to the lack of DBA oversight. Furthermore, unsupervised schema changes increase DBA challenges in diagnosing associated issues. Frequently, such troubleshooting requires the DBA to review application code written in programming languages (e.g., Java) rather than in RDBMS DDL (Data Definition Language) – a skill that most DBAs do not possess.

NoSQL business and data model design process

In old-school software engineering practice, sound business and (relational) data model designs are key to successful medium- to large-scale software projects. As NoSQL developers assume business / data model design ownership, another dilemma arises: data modeling tools. For example, traditional RDBMS logical and physical data models are governed and published by dedicated professionals using commercial tools, such as PowerDesigner or ER/Studio.

Given the nascent state of NoSQL technology, there isn’t a professional-quality data modeling tool for such tasks. It is not uncommon for stakeholders to review application source code in order to uncover data model information. This is a tall order for non-technical users such as business owners or product managers. Other approaches, like sampling actual data from production databases, can be equally laborious and tedious.

It is obvious that extensive investment in automation and tooling is required. To help alleviate this challenge, we recommend that NoSQL projects use the business and data model design process shown in the following diagram (illustrated with MongoDB’s document-centric model):

design_process

Figure 1

  • Business Requirements & Domain Model: At the high level, one can continue using database-agnostic methodologies, such as domain-driven design, to capture and define business requirements
  • Query Patterns & Application Object Model: After preliminary business requirements and the domain model are produced, one can work iteratively and in parallel to analyze top user access patterns and the application model, using UML class or object diagrams. With RDMS, applications can implement database access using either a declarative query (i.e., using a single SQL table join) or a navigational approach (i.e., walking individual tables embedded in application logic). The latter approach typically requires an object-relational mapping (ORM) layer to facilitate tedious plumbing work. By nature, almost all NoSQL databases belong to the latter category. MongoDB can support both approaches through the JSON Document model, SQL-subset query, and comprehensive secondary indexing capabilities.
  • JSON Document Model & MongoDB Collection / Document: This part is where native physical data modeling takes place. One has to understand the specific NoSQL product’s strengths and weaknesses in order to produce efficient schema designs and serve effective, high-performance queries. For example, modeling social network entities like followed and followers is very different from modeling online blogging applications. As such, social networking applications are best implemented using Graph NoSQL databases like Neo4j, while online blogging applications can be implemented using other flavors of NoSQL like MongoDB.

RDBMS data modeling influence on NoSQL

Interestingly enough, old-school RDBMS data modeling techniques still play a meaningful role for those who are new to NoSQL technology. Using document-centric MongoDB as an example, the following diagram illustrates how one can map a relational data model to a comparable MongoDB document-centric data model:

mongodb_mapping

Figure 2

NoSQL data model variation

In the relational world, logical data models are reasonably portable among different RDBMS products. In a physical data model, design specifications such as storage clauses or non-standard SQL extensions might vary from vendor to vendor. Various SQL standards, such as SQL-92 and the latest SQL:2008 as defined by industry bodies like ANSI/ISO, can help application portability across different database platforms.

However, in the NoSQL world, physical data models vary dramatically among different NoSQL databases; there is no industry standard comparable to SQL-92 for RDBMS. Therefore, it helps to understand key differences in the various NoSQL database models:

  • Key-value stores – Collections comprised of unique keys having 1-n valid values
  • Column families – Distributed data stores in which a column consists of a unique key, values for the key, and a timestamp differentiating current from stale values
  • Document databases – Systems that store and manage documents and their metadata (type, title, author, creation/modification/deletion date, etc.)
  • Graph databases – Systems that use graph theory to represent and store data as nodes (people, business, accounts, or other entities), node properties, and edges (lines connecting nodes/properties to each other)

The following diagram illustrates the comparison landscape based on model complexity and scalability:

nosql_comparisons

Figure 3

It is worth mentioning that for NoSQL data models, a natural evolutionary path exists from simple key-value stores to the highly complicated graph databases, as shown in the following diagram:

nosql_evolution

Figure 4

NoSQL data model visualization

For conceptual data models, diagramming techniques such as the Entity Relationship Diagram can continue to be used to model NoSQL applications. However, logical and physical NoSQL data modeling requires new thinking, due to each NoSQL product assuming a different native structure. One can intuitively use any of the following three visualization approaches, using a document-centric data model like MongoDB as an example:

  • Native visual representation of MongoDB collections with support for nested sub-documents (see Figure 2 above)

Pros – It naturally conveys a complex document model through an intuitive visual representation.
Cons – Without specialized tools support, visualization results in ad-hoc drawing using non-uniform conventions or notations.

  • Reverse engineering selected sample documents using JSON Designer (see Figure 5 below)

Pros – It can easily reverse engineer a hierarchical model into a visual representation from existing JSON documents stored in NoSQL databases like MongoDB.
Cons – As of this writing, JSON Designer is available only on iPhone / iPad. Furthermore, it does not include native DB objects, such as MongoDB indexes.

json_designer

Figure 5

  • Traditional RDBMS data modeling tools like PowerDesigner (see Figure 6 below)

Pros – Commercial tools support is available.
Cons – it requires tedious manual preparation and diagram arrangement to represent complex and deeply nested document structure.

power_designer

Figure 6

In a future post, we’ll cover specific data model visualization techniques for other NoSQL products such as Cassandra, which is based on the Column Family structure.

New NoSQL data modeling opportunities

Like any emerging technology, NoSQL will mature as it becomes mainstream. We envision the following new data modeling opportunities for NoSQL:

  • Reusable data model design patterns (some product-specific and some agnostic) to help reduce application development effort and cost
  • Unified NoSQL model repository to support different NoSQL products
  • Bi-directional, round-trip engineering support for (data) model-driven design processes and tools
  • Automated data model extraction from application source code
  • Automated code-model-data consistency validation and consistency conformance metrics
  • Strong control for application / data model change management, with proactive tracking and reconciliation between application code, embedded data models, and the actual data in the NoSQL databases
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Integration and use of Spring Boot and NoSQL database Integration and use of Spring Boot and NoSQL database Jun 22, 2023 pm 10:34 PM

With the development of the Internet, big data analysis and real-time information processing have become an important need for enterprises. In order to meet such needs, traditional relational databases no longer meet the needs of business and technology development. Instead, using NoSQL databases has become an important option. In this article, we will discuss the use of SpringBoot integrated with NoSQL databases to enable the development and deployment of modern applications. What is a NoSQL database? NoSQL is notonlySQL

Application of PHP and NoSQL database Application of PHP and NoSQL database Jun 19, 2023 pm 03:25 PM

In modern web application development, PHP and NoSQL databases have become very popular technology choices. In the past, PHP has been widely used to develop dynamic websites and web applications, while NoSQL database is a new data storage technology that has only recently emerged, providing a more flexible and scalable solution. In this article, we will explore PHP and NoSQL databases in practical applications. PHP is a server-side programming language, originally

Trezor Cold Wallet: Model One and Model T Features and Usage Guide Trezor Cold Wallet: Model One and Model T Features and Usage Guide Jan 19, 2024 pm 04:12 PM

After problems occurred in many centralized exchanges, more and more cryptocurrency investors began to transfer assets to cold wallets to reduce the risks posed by centralized exchanges. This article will introduce Trezor, the world's earliest cold wallet provider. Since the first cold wallet was launched in 2014, it has been sold in many countries around the world. Trezor's products include Model One launched in 2014 and the advanced version Model T launched in 2018. The following will continue to introduce the differences between these two products and other cold wallets. What is Trezor cold wallet? In 2014, Trezor launched the first cold wallet ModelOne. In addition to common BTC, ETH, USDT and other currencies, the wallet also supports more than 1,000 other currencies.

Use PHP and MongoDB to implement NoSQL database to meet different user needs Use PHP and MongoDB to implement NoSQL database to meet different user needs Jun 26, 2023 pm 11:39 PM

NoSQL (NotOnlySQL) database is a type of database that has developed rapidly in recent years. Compared with traditional relational databases, it has better scalability and performance, and supports more data types and data storage methods. Among them, MongoDB is a NoSQL database that uses the document database model and is widely used in web applications, mobile applications, Internet of Things devices and other fields. This article will introduce how to use PHP to write the basic operations of MongoDB database, and demonstrate through examples how to meet

What data is in the data folder? What data is in the data folder? May 05, 2023 pm 04:30 PM

The data folder contains system and program data, such as software settings and installation packages. Each folder in the Data folder represents a different type of data storage folder, regardless of whether the Data file refers to the file name Data or the extension. Named data, they are all data files customized by the system or program. Data is a backup file for data storage. Generally, it can be opened with meidaplayer, notepad or word.

What is the difference between nosql and mysql What is the difference between nosql and mysql May 06, 2019 pm 02:39 PM

The difference between nosql and mysql is: 1. MySQL is a relational database based on table design, while NoSQL is essentially a non-relational document-based design; 2. MySQL’s strict schema restrictions are not easy to expand, while NoSQL can be extended through dynamic schema Features easily extend and more.

Detailed explanation of Model in Django framework Detailed explanation of Model in Django framework Jun 17, 2023 am 08:48 AM

Django is an open source Python web framework. It adopts the MVT (Model-View-Template) architectural pattern and divides the application into three parts: Model, View and Template. Among them, Model is a basic component in the Django framework, used to define and manage data. This article will provide a detailed explanation of Model in the Django framework. What is Model in Django

What to do if mysql load data is garbled? What to do if mysql load data is garbled? Feb 16, 2023 am 10:37 AM

The solution to the garbled mysql load data: 1. Find the SQL statement with garbled characters; 2. Modify the statement to "LOAD DATA LOCAL INFILE "employee.txt" INTO TABLE EMPLOYEE character set utf8;".

See all articles