Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理。为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接一个消息中间件,如Kafka,可以整合Flume+Kafka,Flume作为消息的Producer,生产的消息数据(日志数据、业务请求数据等等)发布到Kafka中,然后通过订阅的方式,使用Storm的Topology作为消息的Consumer,在Storm集群中分别进行如下两个需求场景的处理:
- 直接使用Storm的Topology对数据进行实时分析处理
- 整合Storm+HDFS,将消息处理后写入HDFS进行离线分析处理
实时处理,只要开发满足业务需要的Topology即可,不做过多说明。这里,我们主要从安装配置Kafka、Storm,以及整合Kafka+Storm、整合Storm+HDFS、整合Kafka+Storm+HDFS这几点来配置实践,满足上面提出的一些需求。配置实践使用的软件包如下所示:
- zookeeper-3.4.5.tar.gz
- kafka_2.9.2-0.8.1.1.tgz
- apache-storm-0.9.2-incubating.tar.gz
- hadoop-2.2.0.tar.gz
程序配置运行所基于的操作系统为CentOS 5.11。
Kafka安装配置
我们使用3台机器搭建Kafka集群:
192.168.4.142 h1 192.168.4.143 h2 192.168.4.144 h3
在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。
首先,在h1上准备Kafka安装文件,执行如下命令:
cd /usr/local/ wget http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz tar xvzf kafka_2.9.2-0.8.1.1.tgz ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
修改配置文件/usr/local/kafka/config/server.properties,修改如下内容:
broker.id=0 zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka
这里需要说明的是,默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在zookeeper.connect配置项中指定:
zookeeper.connect=h1:2181,h2:2181,h3:2181/kafka
而且,需要手动在ZooKeeper中创建路径/kafka,使用如下命令连接到任意一台ZooKeeper服务器:
cd /usr/local/zookeeper bin/zkCli.sh
在ZooKeeper执行如下命令创建chroot路径:
create /kafka ''
这样,每次连接Kafka集群的时候(使用--zookeeper
选项),也必须使用带chroot路径的连接字符串,后面会看到。
然后,将配置好的安装文件同步到其他的h2、h3节点上:
scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h2:/usr/local/ scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h3:/usr/local/
最后,在h2、h3节点上配置,执行如下命令:
cd /usr/local/ ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
并修改配置文件/usr/local/kafka/config/server.properties内容如下所示:
broker.id=1 # 在h1修改 broker.id=2 # 在h2修改
因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。
在集群中的h1、h2、h3这三个节点上分别启动Kafka,分别执行如下命令:
bin/kafka-server-start.sh /usr/local/kafka/config/server.properties &
可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。
我们创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:
bin/kafka-topics.sh --create --zookeeper h1:2181,h2:2181,h3:2181/kafka --replication-factor 3 --partitions 5 --topic my-replicated-topic5
查看创建的Topic,执行如下命令:
bin/kafka-topics.sh --describe --zookeeper h1:2181,h2:2181,h3:2181/kafka --topic my-replicated-topic5
结果信息如下所示:
Topic:my-replicated-topic5 PartitionCount:5 ReplicationFactor:3 Configs: Topic: my-replicated-topic5 Partition: 0 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1 Topic: my-replicated-topic5 Partition: 1 Leader: 0 Replicas: 1,0,2 Isr: 0,2,1 Topic: my-replicated-topic5 Partition: 2 Leader: 2 Replicas: 2,1,0 Isr: 2,0,1 Topic: my-replicated-topic5 Partition: 3 Leader: 0 Replicas: 0,1,2 Isr: 0,2,1 Topic: my-replicated-topic5 Partition: 4 Leader: 2 Replicas: 1,2,0 Isr: 2,0,1
上面Leader、Replicas、Isr的含义如下:
Partition: 分区 Leader : 负责读写指定分区的节点 Replicas : 复制该分区log的节点列表 Isr : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader
我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。
在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:
bin/kafka-console-producer.sh --broker-list h1:9092,h2:9092,h3:9092 --topic my-replicated-topic5
在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:
bin/kafka-console-consumer.sh --zookeeper h1:2181,h2:2181,h3:2181/kafka --from-beginning --topic my-replicated-topic5
可以在Producer终端上输入字符串消息行,然后回车,就可以在Consumer终端上看到消费者消费的消息内容。
也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。
Storm安装配置
Storm集群也依赖Zookeeper集群,要保证Zookeeper集群正常运行。Storm的安装配置比较简单,我们仍然使用下面3台机器搭建:
192.168.4.142 h1 192.168.4.143 h2 192.168.4.144 h3
首先,在h1节点上,执行如下命令安装:
cd /usr/local/ wget http://mirror.bit.edu.cn/apache/incubator/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz tar xvzf apache-storm-0.9.2-incubating.tar.gz ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
然后,修改配置文件conf/storm.yaml,内容如下所示:
storm.zookeeper.servers: - "h1" - "h2" - "h3" storm.zookeeper.port: 2181 # nimbus.host: "h1" supervisor.slots.ports: - 6700 - 6701 - 6702 - 6703 storm.local.dir: "/tmp/storm"
将配置好的安装文件,分发到其他节点上:
scp -r /usr/local/apache-storm-0.9.2-incubating/ h2:/usr/local/ scp -r /usr/local/apache-storm-0.9.2-incubating/ h3:/usr/local/
最后,在h2、h3节点上配置,执行如下命令:
cd /usr/local/ ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
Storm集群的主节点为Nimbus,从节点为Supervisor,我们需要在h1上启动Nimbus服务,在从节点h2、h3上启动Supervisor服务:
bin/storm nimbus & bin/storm supervisor &
为了方便监控,可以启动Storm UI,可以从Web页面上监控Storm Topology的运行状态,例如在h2上启动:
bin/storm ui &
这样可以通过访问http://h2:8080/来查看Topology的运行状况。
整合Kafka+Storm
消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际上,apache-storm-0.9.2-incubating这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm-kafka,可以直接使用,例如我使用的Maven依赖配置,如下所示:
<dependency> <groupid>org.apache.storm</groupid> <artifactid>storm-core</artifactid> <version>0.9.2-incubating</version> <scope>provided</scope> </dependency> <dependency> <groupid>org.apache.storm</groupid> <artifactid>storm-kafka</artifactid> <version>0.9.2-incubating</version> </dependency> <dependency> <groupid>org.apache.kafka</groupid> <artifactid>kafka_2.9.2</artifactid> <version>0.8.1.1</version> <exclusions> <exclusion> <groupid>org.apache.zookeeper</groupid> <artifactid>zookeeper</artifactid> </exclusion> <exclusion> <groupid>log4j</groupid> <artifactid>log4j</artifactid> </exclusion> </exclusions> </dependency>
下面,我们开发了一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:
package org.shirdrn.storm.examples; import java.util.Arrays; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import java.util.Map.Entry; import java.util.concurrent.atomic.AtomicInteger; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import storm.kafka.BrokerHosts; import storm.kafka.KafkaSpout; import storm.kafka.SpoutConfig; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; public class MyKafkaTopology { public static class KafkaWordSplitter extends BaseRichBolt { private static final Log LOG = LogFactory.getLog(KafkaWordSplitter.class); private static final long serialVersionUID = 886149197481637894L; private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String line = input.getString(0); LOG.info("RECV[kafka -> splitter] " + line); String[] words = line.split("\\s+"); for(String word : words) { LOG.info("EMIT[splitter -> counter] " + word); collector.emit(input, new Values(word, 1)); } collector.ack(input); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } public static class WordCounter extends BaseRichBolt { private static final Log LOG = LogFactory.getLog(WordCounter.class); private static final long serialVersionUID = 886149197481637894L; private OutputCollector collector; private Map<string atomicinteger> counterMap; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; this.counterMap = new HashMap<string atomicinteger>(); } @Override public void execute(Tuple input) { String word = input.getString(0); int count = input.getInteger(1); LOG.info("RECV[splitter -> counter] " + word + " : " + count); AtomicInteger ai = this.counterMap.get(word); if(ai == null) { ai = new AtomicInteger(); this.counterMap.put(word, ai); } ai.addAndGet(count); collector.ack(input); LOG.info("CHECK statistics map: " + this.counterMap); } @Override public void cleanup() { LOG.info("The final result:"); Iterator<entry atomicinteger>> iter = this.counterMap.entrySet().iterator(); while(iter.hasNext()) { Entry<string atomicinteger> entry = iter.next(); LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get()); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("word", "count")); } } public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { String zks = "h1:2181,h2:2181,h3:2181"; String topic = "my-replicated-topic5"; String zkRoot = "/storm"; // default zookeeper root configuration for storm String id = "word"; BrokerHosts brokerHosts = new ZkHosts(zks); SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id); spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme()); spoutConf.forceFromStart = false; spoutConf.zkServers = Arrays.asList(new String[] {"h1", "h2", "h3"}); spoutConf.zkPort = 2181; TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5); // Kafka我们创建了一个5分区的Topic,这里并行度设置为5 builder.setBolt("word-splitter", new KafkaWordSplitter(), 2).shuffleGrouping("kafka-reader"); builder.setBolt("word-counter", new WordCounter()).fieldsGrouping("word-splitter", new Fields("word")); Config conf = new Config(); String name = MyKafkaTopology.class.getSimpleName(); if (args != null && args.length > 0) { // Nimbus host name passed from command line conf.put(Config.NIMBUS_HOST, args[0]); conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); } else { conf.setMaxTaskParallelism(3); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(name, conf, builder.createTopology()); Thread.sleep(60000); cluster.shutdown(); } } } </string></entry></string></string>
上面程序,在本地调试(使用LocalCluster)不需要输入任何参数,提交到实际集群中运行时,需要传递一个参数,该参数为Nimbus的主机名称。
通过Maven构建,生成一个包含依赖的single jar文件(不要把Storm的依赖包添加进去),例如storm-examples-0.0.1-SNAPSHOT.jar,在提交Topology程序到Storm集群之前,因为用到了Kafka,需要拷贝一下依赖jar文件到Storm集群中的lib目录下面:
cp /usr/local/kafka/libs/kafka_2.9.2-0.8.1.1.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/scala-library-2.9.2.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/metrics-core-2.2.0.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/snappy-java-1.0.5.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/zkclient-0.3.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/log4j-1.2.15.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/slf4j-api-1.7.2.jar /usr/local/storm/lib/ cp /usr/local/kafka/libs/jopt-simple-3.2.jar /usr/local/storm/lib/
然后,就可以提交我们开发的Topology程序了:
bin/storm jar /home/storm/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.MyKafkaTopology h1
可以通过查看日志文件(logs/目录下)或者Storm UI来监控Topology的运行状况。如果程序没有错误,可以使用前面我们使用的Kafka Producer来生成消息,就能看到我们开发的Storm Topology能够实时接收到并进行处理。
上面Topology实现代码中,有一个很关键的配置对象SpoutConfig,配置属性如下所示:
spoutConf.forceFromStart = false;
该配置是指,如果该Topology因故障停止处理,下次正常运行时是否从Spout对应数据源Kafka中的该订阅Topic的起始位置开始读取,如果forceFromStart=true,则之前处理过的Tuple还要重新处理一遍,否则会从上次处理的位置继续处理,保证Kafka中的Topic数据不被重复处理,是在数据源的位置进行状态记录。
整合Storm+HDFS
Storm实时计算集群从Kafka消息中间件中消费消息,有实时处理需求的可以走实时处理程序,还有需要进行离线分析的需求,如写入到HDFS进行分析。下面实现了一个Topology,代码如下所示:
package org.shirdrn.storm.examples; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Map; import java.util.Random; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.storm.hdfs.bolt.HdfsBolt; import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat; import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat; import org.apache.storm.hdfs.bolt.format.FileNameFormat; import org.apache.storm.hdfs.bolt.format.RecordFormat; import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy; import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy; import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit; import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy; import org.apache.storm.hdfs.bolt.sync.SyncPolicy; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.SpoutOutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.topology.base.BaseRichSpout; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Values; import backtype.storm.utils.Utils; public class StormToHDFSTopology { public static class EventSpout extends BaseRichSpout { private static final Log LOG = LogFactory.getLog(EventSpout.class); private static final long serialVersionUID = 886149197481637894L; private SpoutOutputCollector collector; private Random rand; private String[] records; @Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.collector = collector; rand = new Random(); records = new String[] { "10001 ef2da82d4c8b49c44199655dc14f39f6 4.2.1 HUAWEI G610-U00 HUAWEI 2 70:72:3c:73:8b:22 2014-10-13 12:36:35", "10001 ffb52739a29348a67952e47c12da54ef 4.3 GT-I9300 samsung 2 50:CC:F8:E4:22:E2 2014-10-13 12:36:02", "10001 ef2da82d4c8b49c44199655dc14f39f6 4.2.1 HUAWEI G610-U00 HUAWEI 2 70:72:3c:73:8b:22 2014-10-13 12:36:35" }; } @Override public void nextTuple() { Utils.sleep(1000); DateFormat df = new SimpleDateFormat("yyyy-MM-dd_HH-mm-ss"); Date d = new Date(System.currentTimeMillis()); String minute = df.format(d); String record = records[rand.nextInt(records.length)]; LOG.info("EMIT[spout -> hdfs] " + minute + " : " + record); collector.emit(new Values(minute, record)); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("minute", "record")); } } public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { // use "|" instead of "," for field delimiter RecordFormat format = new DelimitedRecordFormat() .withFieldDelimiter(" : "); // sync the filesystem after every 1k tuples SyncPolicy syncPolicy = new CountSyncPolicy(1000); // rotate files FileRotationPolicy rotationPolicy = new TimedRotationPolicy(1.0f, TimeUnit.MINUTES); FileNameFormat fileNameFormat = new DefaultFileNameFormat() .withPath("/storm/").withPrefix("app_").withExtension(".log"); HdfsBolt hdfsBolt = new HdfsBolt() .withFsUrl("hdfs://h1:8020") .withFileNameFormat(fileNameFormat) .withRecordFormat(format) .withRotationPolicy(rotationPolicy) .withSyncPolicy(syncPolicy); TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("event-spout", new EventSpout(), 3); builder.setBolt("hdfs-bolt", hdfsBolt, 2).fieldsGrouping("event-spout", new Fields("minute")); Config conf = new Config(); String name = StormToHDFSTopology.class.getSimpleName(); if (args != null && args.length > 0) { conf.put(Config.NIMBUS_HOST, args[0]); conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); } else { conf.setMaxTaskParallelism(3); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(name, conf, builder.createTopology()); Thread.sleep(60000); cluster.shutdown(); } } }
上面的处理逻辑,可以对HdfsBolt进行更加详细的配置,如FileNameFormat、SyncPolicy、FileRotationPolicy(可以设置在满足什么条件下,切出一个新的日志,如可以指定多长时间切出一个新的日志文件,可以指定一个日志文件大小达到设置值后,再写一个新日志文件),更多设置可以参考storm-hdfs,。
上面代码在打包的时候,需要注意,使用storm-starter自带的Maven打包配置,可能在将Topology部署运行的时候,会报错,可以使用maven-shade-plugin这个插件,如下配置所示:
<plugin> <groupid>org.apache.maven.plugins</groupid> <artifactid>maven-shade-plugin</artifactid> <version>1.4</version> <configuration> <createdependencyreducedpom>true</createdependencyreducedpom> </configuration> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"></transformer> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainclass></mainclass> </transformer> </transformers> </configuration> </execution> </executions> </plugin>
整合Kafka+Storm+HDFS
上面分别对整合Kafka+Storm和Storm+HDFS做了实践,可以将后者的Spout改成前者的Spout,从Kafka中消费消息,在Storm中可以做简单处理,然后将数据写入HDFS,最后可以在Hadoop平台上对数据进行离线分析处理。下面,写了一个简单的例子,从Kafka消费消息,然后经由Storm处理,写入到HDFS存储,代码如下所示:
package org.shirdrn.storm.examples; import java.util.Arrays; import java.util.Map; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.storm.hdfs.bolt.HdfsBolt; import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat; import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat; import org.apache.storm.hdfs.bolt.format.FileNameFormat; import org.apache.storm.hdfs.bolt.format.RecordFormat; import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy; import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy; import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit; import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy; import org.apache.storm.hdfs.bolt.sync.SyncPolicy; import storm.kafka.BrokerHosts; import storm.kafka.KafkaSpout; import storm.kafka.SpoutConfig; import storm.kafka.StringScheme; import storm.kafka.ZkHosts; import backtype.storm.Config; import backtype.storm.LocalCluster; import backtype.storm.StormSubmitter; import backtype.storm.generated.AlreadyAliveException; import backtype.storm.generated.InvalidTopologyException; import backtype.storm.spout.SchemeAsMultiScheme; import backtype.storm.task.OutputCollector; import backtype.storm.task.TopologyContext; import backtype.storm.topology.OutputFieldsDeclarer; import backtype.storm.topology.TopologyBuilder; import backtype.storm.topology.base.BaseRichBolt; import backtype.storm.tuple.Fields; import backtype.storm.tuple.Tuple; import backtype.storm.tuple.Values; public class DistributeWordTopology { public static class KafkaWordToUpperCase extends BaseRichBolt { private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase.class); private static final long serialVersionUID = -5207232012035109026L; private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String line = input.getString(0).trim(); LOG.info("RECV[kafka -> splitter] " + line); if(!line.isEmpty()) { String upperLine = line.toUpperCase(); LOG.info("EMIT[splitter -> counter] " + upperLine); collector.emit(input, new Values(upperLine, upperLine.length())); } collector.ack(input); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("line", "len")); } } public static class RealtimeBolt extends BaseRichBolt { private static final Log LOG = LogFactory.getLog(KafkaWordToUpperCase.class); private static final long serialVersionUID = -4115132557403913367L; private OutputCollector collector; @Override public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; } @Override public void execute(Tuple input) { String line = input.getString(0).trim(); LOG.info("REALTIME: " + line); collector.ack(input); } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { } } public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException { // Configure Kafka String zks = "h1:2181,h2:2181,h3:2181"; String topic = "my-replicated-topic5"; String zkRoot = "/storm"; // default zookeeper root configuration for storm String id = "word"; BrokerHosts brokerHosts = new ZkHosts(zks); SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id); spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme()); spoutConf.forceFromStart = false; spoutConf.zkServers = Arrays.asList(new String[] {"h1", "h2", "h3"}); spoutConf.zkPort = 2181; // Configure HDFS bolt RecordFormat format = new DelimitedRecordFormat() .withFieldDelimiter("\t"); // use "\t" instead of "," for field delimiter SyncPolicy syncPolicy = new CountSyncPolicy(1000); // sync the filesystem after every 1k tuples FileRotationPolicy rotationPolicy = new TimedRotationPolicy(1.0f, TimeUnit.MINUTES); // rotate files FileNameFormat fileNameFormat = new DefaultFileNameFormat() .withPath("/storm/").withPrefix("app_").withExtension(".log"); // set file name format HdfsBolt hdfsBolt = new HdfsBolt() .withFsUrl("hdfs://h1:8020") .withFileNameFormat(fileNameFormat) .withRecordFormat(format) .withRotationPolicy(rotationPolicy) .withSyncPolicy(syncPolicy); // configure & build topology TopologyBuilder builder = new TopologyBuilder(); builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5); builder.setBolt("to-upper", new KafkaWordToUpperCase(), 3).shuffleGrouping("kafka-reader"); builder.setBolt("hdfs-bolt", hdfsBolt, 2).shuffleGrouping("to-upper"); builder.setBolt("realtime", new RealtimeBolt(), 2).shuffleGrouping("to-upper"); // submit topology Config conf = new Config(); String name = DistributeWordTopology.class.getSimpleName(); if (args != null && args.length > 0) { String nimbus = args[0]; conf.put(Config.NIMBUS_HOST, nimbus); conf.setNumWorkers(3); StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology()); } else { conf.setMaxTaskParallelism(3); LocalCluster cluster = new LocalCluster(); cluster.submitTopology(name, conf, builder.createTopology()); Thread.sleep(60000); cluster.shutdown(); } } }
上面代码中,名称为to-upper的Bolt将接收到的字符串行转换成大写以后,会将处理过的数据向后面的hdfs-bolt、realtime这两个Bolt各发一份拷贝,然后由这两个Bolt分别根据实际需要(实时/离线)单独处理。
打包后,在Storm集群上部署并运行这个Topology:
bin/storm jar ~/storm-examples-0.0.1-SNAPSHOT.jar org.shirdrn.storm.examples.DistributeWordTopology h1
可以通过Storm UI查看Topology运行情况,可以查看HDFS上生成的数据。
参考链接
- http://kafka.apache.org/
- http://kafka.apache.org/documentation.html
- https://cwiki.apache.org/confluence/display/KAFKA/Consumer+Group+Example
- http://storm.apache.org/
- http://storm.apache.org/documentation/Tutorial.html
- http://storm.apache.org/documentation/FAQ.html
- https://github.com/ptgoetz/storm-hdfs
原文地址:Kafka+Storm+HDFS整合实践, 感谢原作者分享。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

As an email manager application, Microsoft Outlook allows us to schedule events and appointments. It enables us to stay organized by providing tools to create, manage and track these activities (also called events) in the Outlook application. However, sometimes unwanted events are added to the calendar in Outlook, which creates confusion for users and spams the calendar. In this article, we will explore various scenarios and steps that can help us prevent Outlook from automatically adding events to my calendar. Outlook Events – A brief overview Outlook events serve multiple purposes and have many useful features as follows: Calendar Integration: In Outlook

Dream Weaver CMS Station Group Practice Sharing In recent years, with the rapid development of the Internet, website construction has become more and more important. When building multiple websites, site group technology has become a very effective method. Among the many website construction tools, Dreamweaver CMS has become the first choice of many website enthusiasts due to its flexibility and ease of use. This article will share some practical experience about Dreamweaver CMS station group, as well as some specific code examples, hoping to provide some help to readers who are exploring station group technology. 1. What is Dreamweaver CMS station group? Dream Weaver CMS

Principle analysis and practical exploration of the Struts framework. As a commonly used MVC framework in JavaWeb development, the Struts framework has good design patterns and scalability and is widely used in enterprise-level application development. This article will analyze the principles of the Struts framework and explore it with actual code examples to help readers better understand and apply the framework. 1. Analysis of the principles of the Struts framework 1. MVC architecture The Struts framework is based on MVC (Model-View-Con

PHP Coding Practices: Refusal to Use Alternatives to Goto Statements In recent years, with the continuous updating and iteration of programming languages, programmers have begun to pay more attention to coding specifications and best practices. In PHP programming, the goto statement has existed as a control flow statement for a long time, but in practical applications it often leads to a decrease in the readability and maintainability of the code. This article will share some alternatives to help developers refuse to use goto statements and improve code quality. 1. Why refuse to use goto statement? First, let's think about why

C++ Reflection Mechanism Practice: Implementing Flexible Runtime Type Information Introduction: C++ is a strongly typed language and does not directly provide a reflection mechanism to obtain class type information like other languages. However, with some tricks and technical means, we can also achieve similar reflection functions in C++. This article describes how to leverage template metaprogramming and macro definitions to achieve flexible runtime type information. 1. What is the reflection mechanism? The reflection mechanism refers to obtaining the type information of a class at runtime, such as the class name, member functions, member variables and other attributes.

Golang is a powerful and efficient programming language that is widely used to build web services and applications. In network services, traffic management is a crucial part. It can help us control and optimize data transmission on the network and ensure the stability and performance of services. This article will introduce the best practices for traffic management using Golang and provide specific code examples. 1. Use Golang’s net package for basic traffic management. Golang’s net package provides a way to handle network data.

Using PyCharm for remote development is an efficient way that allows developers to easily edit, debug and run code on the remote server in the local environment. This article will introduce how to use PyCharm for remote development practice, and combine it with specific code examples to help readers better understand and apply this technology. What is PyCharmPyCharm is a Python integrated development environment (IDE) developed by JetBrains, which provides a wealth of functions and tools to help

C++ Reflection Mechanism Practice: Implementing Flexible Runtime Type Information Introduction: C++ is a strongly typed language and does not directly provide a reflection mechanism to obtain class type information like other languages. However, with some tricks and technical means, we can also achieve similar reflection functions in C++. This article describes how to leverage template metaprogramming and macro definitions to achieve flexible runtime type information. 1. What is the reflection mechanism? The reflection mechanism refers to obtaining the type information of a class at runtime, such as the class name, member functions, member variables and other attributes.
